Anderson, R. C. (1984). Some reflections on the acquisition of knowledge. Educational Researcher,
13(10), 5–10.
Article
Google Scholar
Aronoff, J. M., Gonnermanb, L. M., Almorc, A., Arunachalam, S., Kempler, D., & Andersen, E. S. (2005). Information content versus relational knowledge: Semantic deficits in patients with Alzheimer’s disease. Neuropsychologia,
44, 21–35.
Article
Google Scholar
Bonilla, J. L., & Johnson, M. K. (1995). Semantic space in Alzheimer’s disease patients. Neuropsychology,
9(3), 345–353.
Article
Google Scholar
Britton, B. K., & Gülgöz, S. (1991). Using Kintsch’s computational model to improve instructional text: Effects of repairing inference calls on recall and cognitive structures. Journal of Educational Psychology,
83(3), 329–345.
Article
Google Scholar
Champagne, A. B., Klopfer, L. E., Desena, A. T., & Squires, D. A. (1981). Structural representations of student’s knowledge before and after science instruction. Journal of Research in Science Teaching,
18(2), 97–111.
Article
Google Scholar
Clariana, R. B. (2010). Multi-decision approaches for eliciting knowledge structure. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 41–59). Berlin: Springer.
Chapter
Google Scholar
Clariana, R. B., Rysavy, M. D., & Taricani, E. M. (2015). Text signals influence team artifacts. Educational Technology Research and Development,
63, 35–52.
Article
Google Scholar
Clariana, R. B., & Wallace, P. (2007). A computer-based approach for deriving and measuring individual and team knowledge structure from essay questions. Journal of Educational Computing Research,
37(3), 211–227.
Article
Google Scholar
Clariana, R. B., & Wallace, P. E. (2009). A comparison of pair-wise, list-wise, and clustering approaches for eliciting structural knowledge. International Journal of Instructional Media,
36(3), 287–302.
Google Scholar
Clark, D. B., D’Angelo, C. M., & Schleigh, S. P. (2011). Comparison of student’s knowledge Structure coherence and understanding of force in the Philippines, Turkey, China, Mexico, and the United States. Journal of the Learning Sciences,
20, 207–261. doi:10.1080/10508406.2010.508028.
Article
Google Scholar
Collins, A. M., & Quillian, M. R. (1969). Retrieval lime from long-term memory. Journal of Verbal Learning and Verbal Behavior,
8, 240–247.
Article
Google Scholar
Davis, M. H., & Guthrie, J. T. (2015). Measuring reading comprehension of content area texts using an assessment of knowledge organization. The Journal of Educational Research,
108(2), 148–164. doi:10.1080/00220671.2013.863749.
Article
Google Scholar
Fitzpatrick, T., & Izura, C. (2011). Word associations in L1 and L2: An exploratory study of response types, response times, and interlingual mediation. Studies in Second Language Acquisition,
33, 373–398.
Article
Google Scholar
Fuessel, D., & Isermann, R. (2000). Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme. IEEE Transactions on Industrial Electronics,
47(5), 1070–1077.
Article
Google Scholar
Galton, F. R. S. (1879). Psychometric experiments. Brain,
2, 149–162.
Article
Google Scholar
Gonzalvo, P., Canas, J. J., & Bajo, M. (1994). Structural representations in knowledge acquisition. Journal of Educational Psychology,
86(4), 601–616.
Article
Google Scholar
Günther, J., Bergner, A., Hendlich, M., & Klebe, G. (2003). Utilizing structural knowledge in drug design strategies: Applications using Relibase. Journal of Molecular Biology,
326(2), 621–636.
Article
Google Scholar
Guthrie, J. T., Wigfield, A., Barbosa, P., Perencevich, K. C., Taboada, A., Davis, M. H., et al. (2004). Increasing reading comprehension and engagement through concept-oriented reading Instruction. Journal of Educational Psychology,
96, 403–423. doi:10.1037/0022-0663.96.3.403.
Article
Google Scholar
Hakan, K. U. R. T., Ekici, G., Aktas, M., & Aksu, O. (2013). Determining biology student teachers’ cognitive structure on the concept of “diffusion” through the free word-association test and the drawing-writing technique. International Education Studies,
6(9), p187.
Google Scholar
Hwang, G. J., Wu, P. H., & Ke, H. R. (2011). An interactive concept map approach to supporting mobile learning activities for natural science courses. Computers and Education,
57(4), 2272–2280.
Article
Google Scholar
Jonassen, D. H., Beissner, K., & Yacci, M. (1993). Structural knowledge: Techniques for representing, conveying, and acquiring structural knowledge. Hillsdale: Lawrence Erlbaum Associates.
Google Scholar
Kaufman, A. B., Green, S. R., Seitz, A. R., & Burgess, C. (2012). Using a self-organizing map (SOM) and the hyperspace analog to language (HAL) model to identify patterns of syntax and structure in the songs of humpback whales. International Journal of Comparative Psychology,
25, 237–275.
Google Scholar
Kim, K., & Clariana, R. B. (2015). Knowledge structure measures of reader’s situation models across languages: Translation engenders richer structure. Technology Knowledge and Learning,
20, 249–268.
Article
Google Scholar
Kroll, J. F., & de Groot, A. M. B. (2014). Lexical and conceptual memory in the bilingual: Mapping form to meaning in two languages. In J. F. Kroll & A. M. B. de Groot (Eds.), Tutorials in bilingualism (pp. 169–200). New York: Psychology Press.
Google Scholar
Martinez, M. M. (2010). Learning and cognition: The design of the mind. Upper Saddle River, NJ: Merrill.
Google Scholar
National Research Council. (2001). Knowing what students know: The science and design of educational assessment. Washington: National Academies Press.
Google Scholar
Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching,
27(10), 937–949.
Article
Google Scholar
Ober, B. A., & Shenaut, G. K. (1999). Well-organized conceptual domains in Alzheimer’s disease. Journal of the International Neuropsychological Society,
5(7), 676–684.
Google Scholar
Ozgungor, S., & Guthrie, J. T. (2004). Interactions among elaborative interrogation, knowledge, and interest in the process of constructing knowledge from text. Journal of Educational Psychology,
96, 437–443. doi:10.1037/0022-0663.96.3.437.
Article
Google Scholar
Rumlehart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Schemata and sequential thought processes in PDP models. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2, pp. 7–57)., Psychological and biological models Cambridge: MIT Press.
Google Scholar
Schvaneveldt, R. (1990). Pathfinder associative networks: Studies in knowledge organization (p. 1990). Norwood: Ablex.
Google Scholar
Schvaneveldt, R. (2016). Curated bibliography of 272 published investigation using Pathfinder network methods. http://interlinkinc.net/References.html.
Shavelson, R. J., & Stanton, G. C. (1975). Construct validation: Methodology and application to three measures of cognitive structure. Journal of Educational Measurement,
12(2), 67–85.
Article
Google Scholar
Spinozzi, G. (1993). Development of spontaneous classificatory behavior in chimpanzees (Pan troglodytes). Journal of Comparative Psychology,
107, 193–200. doi:10.1037/0735-7036.107.2.193.
Article
Google Scholar
Suen, H. K., & Murphy, L. C. R. (1999). Validating measures of structural knowledge through the multitrait-multimethod matrix. Presented at AERA.
Taricani, E. M., & Clariana, R. B. (2006). A technique for automatically scoring open-ended concept maps. Educational Technology Research and Development,
54(1), 65–82.
Article
Google Scholar
Trumpower, D. L., & Goldsmith, T. E. (2004). Structural enhancement of learning. Contemporary Educational Psychology,
29, 426–446.
Article
Google Scholar
Willson, V. L., & Rupley, W. H. (1997). A structural equation model for reading comprehension based on background, phonemic, and strategy knowledge. Scientific Studies of Reading,
1(1), 45–63.
Article
Google Scholar
Zareva, A., & Wolter, B. (2012). The ‘promise’ of three methods of word association analysis to L2 lexical research. Second Language Research,
28, 41–67.
Article
Google Scholar
Zhao, X., & Li, P. (2013). Simulating cross-language priming with a dynamic computational model of the lexicon. Bilingualism Language and Cognition,
16, 288–303. doi:10.1017/S1366728912000624.
Article
Google Scholar