Abstract
This paper concerns the analysis of a didactic engineering, the aim of which is to introduce Calculus, at secondary-school level, through the relationship between global and local points of view. It was designed for a graphic–symbolic calculator environment and structured in accordance with a learning trajectory from identifying the graphical phenomenon of local linearity to its mathematical formulation. This learning trajectory involves the reconstruction of the relationship with the tangent line to a curve at a chosen point. The analysis shows the use of different semiotic systems in order to grasp this phenomenon and construct its mathematical meaning.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Didactic engineering comprises three phases:
1. Preliminary analysis, in which the theoretical framework and aims of the research are established.
2. Construction and a-priori analysis.
3. Experiments, a-posteriori analysis, and conclusions. The validation of hypothesis is based on comparison of a-priori analysis and a-posteriori analysis.
ZoomIn or ZoomBox.
\( {\text{y}}3\left( {\text{x}} \right) = - x^{3} - 2\left| x \right| + 4 \) at x = 0
\( y4\left( x \right) = 4 + x\sin \frac{1}{x} \) at x ≠ 0, = 4 at x = 0
Teacher.
Italian mountain.
Italian word.
Italian word.
Italian word.
Steps:
1. Set the system with the equation of the curve and that of the line passing through the given point (depending on a parameter).
2. Reduce the system to a second-degree equation with a parameter.
3. Compute the parameter imposing the condition for a square root.
In the experiments following the first one, the function was changed from a polynomial of degree two to a polynomial of degree three, to make a possible algebraic solution difficult.
References
Artigue, M. (1988). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281–308.
Artigue, M. (1996). Teaching and learning elementary analysis. In C. Alsina, et al. (Eds.), 8th International Congress on mathematical education—selected lectures (pp. 15–29). Sevilla: S.A.E.M. Thales.
Artigue, M. (1998). L’évolution des problématiques en didactique de l’analyse. Recherches en Didactique des Mathématiques, 18(2), 231–262.
Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274. doi:10.1023/A:1022103903080.
Artigue, M. (2004). The integration of symbolic calculators into secondary education: some lessons from didactic engineering. In D. Guin, K. Ruthven & L. Trouche (Eds.), The didactic challenge of symbolic calculators (pp. 231–294). Dordrecht: Kluwer Academic Publishers.
Artigue, M. (2007). Digital technologies: A window on theoretical issues in mathematics education. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of CERME 5 (pp. 68–82). Larnaka: University of Cyprus.
Arzarello, F., & Bartolini Bussi, M. G. (1998). Italian trends in research in mathematics education: A national case study in the international perspective. In J. Kilpatrick & A. Sierpinska (Eds.), Mathematics education as a research domain: A search for identity (Vol. 2, pp. 243–262). Dordrecht: Kluwer Academic Publishers.
Arzarello, F., & Edwards, L. (2005). Gesture and the construction of mathematical meaning. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th PME Conference (Vol. 1, pp. 22–145). Melbourne University.
Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: artifacts and signs after a Vygotskian perspective. In L. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 746–783). New York: Routledge.
Bartolini Bussi, M. G., Mariotti, M. A., & Ferri, F. (2005). Semiotic mediation in the primary school: Dürer’s glass. In M. Hoffmann, J. Lenhard & F. Seeger (Eds.), Activity and sign–grounding mathematics education (Festschift for Michael Otte) (pp. 77–90). New York: Springer.
Boero, P., Bazzini, L., & Garuti, R. (2001). Metaphors in teaching and learning mathematics: A case study concerning inequalities. In M. van den Hueuvel-Panhuizen (Ed.), Proceedings of the 25th PME Conference (Vol. 2, pp. 185–192). Utrecht University.
Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Objet d’étude et problématique. Recherches en Didactique des Mathématiques, 19(1), 77–124.
Brousseau, G. (1997). Theory of didactic situations in mathematics. Dordrecht: Kluwer Academic Publishers.
Castela, C. (1995). Apprendre avec et contre ses connaissances antérieures. Recherches en Didactique des Mathématiques, 15(1), 7–47.
Chorlay, R. (2007). La multiplicité des points de vue en Analyse élémentaire comme construit historique. In E. Barbin & D. Bénard (Eds.), Histoire des mathématiques: rigueurs, erreurs, raisonnements (pp. 203–227). Lyon: INRP.
Deledicq, A., & Diener, M. (1989). Leçons de calcul infinitésimal. Paris: A. Colin.
Falcade, R. (2006). Théorie des Situations, médiation sémiotique et discussions collectives, dans des séquences d’enseignement avec Cabri-géomètre pour la construction des notions de fonction et graphe de fonction. Grenoble: Université J. Fourier. Unpublished doctoral dissertation.
Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317–333. doi:10.1007/s10649-006-9072-y.
Gray, E., & Tall, D. (2001). Relationships between embodied objects and symbolic procepts: An explanatory theory of success and failure in mathematics. In M. van den Hueuvel-Panhuizen (Ed.), Proceedings of the 25th PME Conference (Vol. 3, pp. 65–72). Utrecht University.
Groupe, A. H. A. (Ed.). (1999). Vers l’infini pas à pas—Approche Heuristique de l’Analyse, Manuel de l’élève and Guide Méthodologique. Bruxelles: De Boeck Wesmael.
Kidron, I., Lenfant, A., Bikner-Ahsbahs, A., Artigue, M., & Dreyfus, T. (2008). Toward networking three theoretical approaches: The case of social interactions. ZDM Zentralblatt für Didaktik der Mathematik, 40(2), 247–264. doi:10.1007/s11858-008-0079-y.
Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.
Longo, G. (1997). Géométrie, Mouvement, Espace: Cognition et Mathématiques. Intellectica, 2(25), 195–218.
Longo, G. (1998). The mathematical continuum, from intuition to logic. In J. Petitot, et al. (Eds.), Naturalizing phenomenology: Issues in contemporary phenomenology and cognitive sciences. Palo Alto: Stanford University Press.
Maschietto, M. (2001). Fonctionnalités des représentations graphiques dans la résolution de problèmes d’analyse à l’université. Recherches en Didactiques des Mathématiques, 21(1.2), 123–156.
Maschietto, M. (2002). L’enseignement de l’analyse au lycee: les debuts du jeu global/local dans l’environnement de calculatrices. Doctorat dissertation, Université Paris 7 and Università di Torino.
McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.
Radford, L., Bardini, C., Sabena, C., Diallo, P., & Simbagoye, A. (2005). On Embodiment, artifacts, and signs: A semiotic-cultural perspective on mathematical thinking. In H.L. Chick & J.L. Vincent (Eds.), Proceedings of the 29th PME Conference (Vol. 4, pp. 113–120). Melbourne University.
Sierpinska, A. (1985). Obstacles épistémologiques relatifs à la notion de limite. Recherches en Didactique des Mathématiques, 6(1), 5–68.
Tall, D (1989). Concept image, generic organizers, computer and curriculum changes. For the learning of mathematics, 9(3), 37–42.
Tall, D. (2000). Biological brain, mathematical mind & computational computers (how the computer can support mathematical thinking and learning). In Wei-Chi Yang, Sung-Chi Chu & Jen-Chung Chuan (Eds.), Proceedings of the 5th Asian Technology Conference in Mathematics (pp. 3–20). Chiang Mai.
Tall, D. (2003). Using technology to support an embodied approach to learning concepts in mathematics. In L. M. Carvalho & L. C. Guimarães (Eds.), Historia e Tecnologia no Ensino de Matemática (Vol. 1, pp. 1–28). Rio De Janeiro: Universidade do Estado do Rio De Janeiro.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Maschietto, M. Graphic Calculators and Micro-Straightness: Analysis of a Didactic Engineering. Int J Comput Math Learning 13, 207–230 (2008). https://doi.org/10.1007/s10758-008-9141-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10758-008-9141-7
