Skip to main content
Log in

Graphic Calculators and Micro-Straightness: Analysis of a Didactic Engineering

  • Published:
International Journal of Computers for Mathematical Learning Aims and scope Submit manuscript

Abstract

This paper concerns the analysis of a didactic engineering, the aim of which is to introduce Calculus, at secondary-school level, through the relationship between global and local points of view. It was designed for a graphic–symbolic calculator environment and structured in accordance with a learning trajectory from identifying the graphical phenomenon of local linearity to its mathematical formulation. This learning trajectory involves the reconstruction of the relationship with the tangent line to a curve at a chosen point. The analysis shows the use of different semiotic systems in order to grasp this phenomenon and construct its mathematical meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Didactic engineering comprises three phases:

    1. Preliminary analysis, in which the theoretical framework and aims of the research are established.

    2. Construction and a-priori analysis.

    3. Experiments, a-posteriori analysis, and conclusions. The validation of hypothesis is based on comparison of a-priori analysis and a-posteriori analysis.

  2. ZoomIn or ZoomBox.

  3. \( {\text{y}}3\left( {\text{x}} \right) = - x^{3} - 2\left| x \right| + 4 \) at x = 0

  4. \( y4\left( x \right) = 4 + x\sin \frac{1}{x} \) at ≠ 0, = 4 at = 0

  5. Teacher.

  6. Italian mountain.

  7. Italian word.

  8. Italian word.

  9. Italian word.

  10. Steps:

    1. Set the system with the equation of the curve and that of the line passing through the given point (depending on a parameter).

    2. Reduce the system to a second-degree equation with a parameter.

    3. Compute the parameter imposing the condition for a square root.

  11. In the experiments following the first one, the function was changed from a polynomial of degree two to a polynomial of degree three, to make a possible algebraic solution difficult.

References

  • Artigue, M. (1988). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281–308.

    Google Scholar 

  • Artigue, M. (1996). Teaching and learning elementary analysis. In C. Alsina, et al. (Eds.), 8th International Congress on mathematical education—selected lectures (pp. 15–29). Sevilla: S.A.E.M. Thales.

    Google Scholar 

  • Artigue, M. (1998). L’évolution des problématiques en didactique de l’analyse. Recherches en Didactique des Mathématiques, 18(2), 231–262.

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274. doi:10.1023/A:1022103903080.

    Article  Google Scholar 

  • Artigue, M. (2004). The integration of symbolic calculators into secondary education: some lessons from didactic engineering. In D. Guin, K. Ruthven & L. Trouche (Eds.), The didactic challenge of symbolic calculators (pp. 231–294). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Artigue, M. (2007). Digital technologies: A window on theoretical issues in mathematics education. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of CERME 5 (pp. 68–82). Larnaka: University of Cyprus.

  • Arzarello, F., & Bartolini Bussi, M. G. (1998). Italian trends in research in mathematics education: A national case study in the international perspective. In J. Kilpatrick & A. Sierpinska (Eds.), Mathematics education as a research domain: A search for identity (Vol. 2, pp. 243–262). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Arzarello, F., & Edwards, L. (2005). Gesture and the construction of mathematical meaning. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th PME Conference (Vol. 1, pp. 22–145). Melbourne University.

  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: artifacts and signs after a Vygotskian perspective. In L. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 746–783). New York: Routledge.

    Google Scholar 

  • Bartolini Bussi, M. G., Mariotti, M. A., & Ferri, F. (2005). Semiotic mediation in the primary school: Dürer’s glass. In M. Hoffmann, J. Lenhard & F. Seeger (Eds.), Activity and sign–grounding mathematics education (Festschift for Michael Otte) (pp. 77–90). New York: Springer.

    Google Scholar 

  • Boero, P., Bazzini, L., & Garuti, R. (2001). Metaphors in teaching and learning mathematics: A case study concerning inequalities. In M. van den Hueuvel-Panhuizen (Ed.), Proceedings of the 25th PME Conference (Vol. 2, pp. 185–192). Utrecht University.

  • Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Objet d’étude et problématique. Recherches en Didactique des Mathématiques, 19(1), 77–124.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactic situations in mathematics. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Castela, C. (1995). Apprendre avec et contre ses connaissances antérieures. Recherches en Didactique des Mathématiques, 15(1), 7–47.

    Google Scholar 

  • Chorlay, R. (2007). La multiplicité des points de vue en Analyse élémentaire comme construit historique. In E. Barbin & D. Bénard (Eds.), Histoire des mathématiques: rigueurs, erreurs, raisonnements (pp. 203–227). Lyon: INRP.

    Google Scholar 

  • Deledicq, A., & Diener, M. (1989). Leçons de calcul infinitésimal. Paris: A. Colin.

    Google Scholar 

  • Falcade, R. (2006). Théorie des Situations, médiation sémiotique et discussions collectives, dans des séquences d’enseignement avec Cabri-géomètre pour la construction des notions de fonction et graphe de fonction. Grenoble: Université J. Fourier. Unpublished doctoral dissertation.

  • Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317–333. doi:10.1007/s10649-006-9072-y.

    Article  Google Scholar 

  • Gray, E., & Tall, D. (2001). Relationships between embodied objects and symbolic procepts: An explanatory theory of success and failure in mathematics. In M. van den Hueuvel-Panhuizen (Ed.), Proceedings of the 25th PME Conference (Vol. 3, pp. 65–72). Utrecht University.

  • Groupe, A. H. A. (Ed.). (1999). Vers l’infini pas à pas—Approche Heuristique de l’Analyse, Manuel de l’élève and Guide Méthodologique. Bruxelles: De Boeck Wesmael.

    Google Scholar 

  • Kidron, I., Lenfant, A., Bikner-Ahsbahs, A., Artigue, M., & Dreyfus, T. (2008). Toward networking three theoretical approaches: The case of social interactions. ZDM Zentralblatt für Didaktik der Mathematik, 40(2), 247–264. doi:10.1007/s11858-008-0079-y.

    Article  Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Longo, G. (1997). Géométrie, Mouvement, Espace: Cognition et Mathématiques. Intellectica, 2(25), 195–218.

    Google Scholar 

  • Longo, G. (1998). The mathematical continuum, from intuition to logic. In J. Petitot, et al. (Eds.), Naturalizing phenomenology: Issues in contemporary phenomenology and cognitive sciences. Palo Alto: Stanford University Press.

    Google Scholar 

  • Maschietto, M. (2001). Fonctionnalités des représentations graphiques dans la résolution de problèmes d’analyse à l’université. Recherches en Didactiques des Mathématiques, 21(1.2), 123–156.

    Google Scholar 

  • Maschietto, M. (2002). L’enseignement de l’analyse au lycee: les debuts du jeu global/local dans l’environnement de calculatrices. Doctorat dissertation, Université Paris 7 and Università di Torino.

  • McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.

    Google Scholar 

  • Radford, L., Bardini, C., Sabena, C., Diallo, P., & Simbagoye, A. (2005). On Embodiment, artifacts, and signs: A semiotic-cultural perspective on mathematical thinking. In H.L. Chick & J.L. Vincent (Eds.), Proceedings of the 29th PME Conference (Vol. 4, pp. 113–120). Melbourne University.

  • Sierpinska, A. (1985). Obstacles épistémologiques relatifs à la notion de limite. Recherches en Didactique des Mathématiques, 6(1), 5–68.

    Google Scholar 

  • Tall, D (1989). Concept image, generic organizers, computer and curriculum changes. For the learning of mathematics, 9(3), 37–42.

    Google Scholar 

  • Tall, D. (2000). Biological brain, mathematical mind & computational computers (how the computer can support mathematical thinking and learning). In Wei-Chi Yang, Sung-Chi Chu & Jen-Chung Chuan (Eds.), Proceedings of the 5th Asian Technology Conference in Mathematics (pp. 3–20). Chiang Mai.

  • Tall, D. (2003). Using technology to support an embodied approach to learning concepts in mathematics. In L. M. Carvalho & L. C. Guimarães (Eds.), Historia e Tecnologia no Ensino de Matemática (Vol. 1, pp. 1–28). Rio De Janeiro: Universidade do Estado do Rio De Janeiro.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Maschietto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maschietto, M. Graphic Calculators and Micro-Straightness: Analysis of a Didactic Engineering. Int J Comput Math Learning 13, 207–230 (2008). https://doi.org/10.1007/s10758-008-9141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-008-9141-7

Keywords

Navigation