Skip to main content

Advertisement

Log in

Genetic variation in health insurance coverage

  • Research article
  • Published:
International Journal of Health Economics and Management Aims and scope Submit manuscript

Abstract

We provide the first investigation into whether and how much genes explain having health insurance coverage or not and possible mechanisms for genetic variation. Using a twin-design that compares identical and non-identical twins from a national sample of US twins from the National Survey of Midlife Development in the United States, we find that genetic effects explain over 40% of the variation in whether a person has any health coverage versus not, and nearly 50% of the variation in whether individuals younger than 65 have private coverage versus whether they have no coverage at all. Nearly one third of the genetic variation in being uninsured versus having private coverage is explained by employment industry, self-employment status, and income, and together with education, they explain over 40% of the genetic influence. Marital status, number of children, and available measures of health status, risk preferences, and prevention effort do not appear to be important channels for genetic effects. That genes have meaningful effects on the insurance status suggests an important source of heterogeneity in insurance take up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agarwal, A., Williams, G. H., & Fisher, N. D. (2005). Genetics of human hypertension. Trends in Endocrinology and Metabolism,16(3), 127–133.

    Article  CAS  Google Scholar 

  • Anokhin, A. P., Golosheykin, S., Grant, J. D., & Heath, A. C. (2011). Heritability of delay discounting in adolescence: A longitudinal twin study. Behavior Genetics,41(2), 175–183.

    Article  Google Scholar 

  • Barnes, J. C., Wright, J. P., Boutwell, B. B., Schwartz, J. A., Connolly, E. J., Nedelec, J. L., et al. (2014). Demonstrating the validity of twin research in criminology. Criminology,52(4), 588–626.

    Article  Google Scholar 

  • Benjamin, D. J., Cesarini, D., Chabris, C. F., Glaeser, E. L., Laibson, D. I., Guðnason, V., et al. (2012). The promises and pitfalls of genoeconomics. Annual Review of Economics,4, 627.

    Article  Google Scholar 

  • Boardman, J. D., Blalock, C. L., & Pampel, F. C. (2010). Trends in the genetic influences on smoking. Journal of Health and Social Behavior,51(1), 108–123.

    Article  Google Scholar 

  • Boardman, J. D., Domingue, B. W., & Daw, J. (2015). What can genes tell us about the relationship between education and health? Social Science and Medicine,127, 171–180.

    Article  Google Scholar 

  • Branigan, A. R., McCallum, K. J., & Freese, J. (2013). Variation in the heritability of educational attainment: An international meta-analysis. Social Forces,92(1), 109–140.

    Article  Google Scholar 

  • Brim, O. G., Baltes, P. B., Lachman, M. E., Markus, H. R., Shweder, R. A., Marmot, M. G., et al. (2017). Midlife in the United States (MIDUS 1), 1995–1996. Ann Arbor, MI: Inter-University Consortium for Political and Social Research [distributor], 2017-11-16. https://doi.org/10.3886/icpsr02760.v12.

  • Burt, C. H., & Simons, R. L. (2014). Pulling back the curtain on heritability studies: Biosocial criminology in the postgenomic era. Criminology,52(2), 223–262.

    Article  Google Scholar 

  • Carlsson, S., Ahlbom, A., Lichtenstein, P., & Andersson, T. (2013). Shared genetic influence of BMI, physical activity and type 2 diabetes: A twin study. Diabetologia,56(5), 1031–1035.

    Article  CAS  Google Scholar 

  • Cesarini, D., Dawes, C. T., Johannesson, M., Lichtenstein, P., & Wallace, B. (2009). Genetic variation in preferences for giving and risk taking. Quarterly Journal of Economics,124, 809–842.

    Article  Google Scholar 

  • Cesarini, D., Johannesson, M., Lichtenstein, P., Sandewall, Ö., & Wallace, B. (2010). Genetic variation in financial decision-making. The Journal of Finance,65(5), 1725–1754.

    Article  Google Scholar 

  • Charney, E., & English, W. (2013). Genopolitics and the science of genetics. American Political Science Review,107(02), 382–395.

    Article  Google Scholar 

  • Congressional Budget Office (CBO). (2017). Repealing the individual health insurance mandate: An updated estimate. https://www.cbo.gov/system/files/115th-congress-2017-2018/reports/53300-individualmandate.pdf. Accessed June 20, 2018.

  • Cronqvist, H., & Siegel, S. (2015). The origins of savings behavior. Journal of Political Economy,123(1), 123–169.

    Article  Google Scholar 

  • Cutler, D., Finkelstein, A., & McGarry, K. (2008). Preference heterogeneity and insurance markets: Explaining a puzzle of insurance. American Economic Review: Papers and Proceedings,98(2), 157–162.

    Article  Google Scholar 

  • Cutler, D. M., & Lleras-Muney, A. (2006). Education and health: Evaluating theories and evidence (No. w12352). National Bureau of Economic Research.

  • Cutler, D. M., & Zeckhauser, R. J. (1998). Adverse selection in health insurance. Forum for Health Economics & Policy,1(1), 1–31. https://doi.org/10.2202/1558-9544.1056.

    Article  Google Scholar 

  • Domingue, B. W., Fletcher, J., Conley, D., & Boardman, J. D. (2014). Genetic and educational assortative mating among US adults. Proceedings of the National Academy of Sciences,111(22), 7996–8000.

    Article  CAS  Google Scholar 

  • Elks, C. E., Den Hoed, M., Zhao, J. H., Sharp, S. J., Wareham, N. J., Loos, R. J., et al. (2012). Variability in the heritability of body mass index: A systematic review and meta-regression. Frontiers in endocrinology,3, 29.

    Article  Google Scholar 

  • Fang, H., Keane, P. M., & Silverman, D. (2008). Sources of advantageous selection: Evidence from the medigap insurance market. Journal of Political Economy,116(2), 303–350.

    Article  Google Scholar 

  • Kaiser Family Foundation (KFF). (2018a). Status of state action on the medicaid expansion decision. https://www.kff.org/health-reform/state-indicator/state-activity-around-expanding-medicaid-under-the-affordable-care-act/?currentTimeframe=0&sortModel=%7B%22colId%22:%22Location%22,%22sort%22:%22asc%22%7D. Accessed June 20, 2018.

  • Kaiser Family Foundation (KFF). (2018b). Uninsured rate among the nonelderly population, 1972–2017. https://www.kff.org/uninsured/slide/uninsured-rate-among-the-nonelderly-population-1972-2017/. Accessed June 20, 2018.

  • Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006). A Swedish national twin study of lifetime major depression. American Journal of Psychiatry,163(1), 109–114.

    Article  Google Scholar 

  • Kosova, G., Abney, M., & Ober, C. (2010). Heritability of reproductive fitness traits in a human population. Proceedings of the National Academy of Sciences,107(suppl 1), 1772–1778.

    Article  CAS  Google Scholar 

  • Kuhnen, C. M., & Chiao, J. Y. (2009). Genetic determinants of financial risk taking. PLoS ONE,4(2), e4362.

    Article  Google Scholar 

  • Maes, H. H., Sullivan, P. F., Bulik, C. M., Neale, M. C., Prescott, C. A., Eaves, L. J., et al. (2004). A twin study of genetic and environmental influences on tobacco initiation, regular tobacco use and nicotine dependence. Psychological Medicine,34(07), 1251–1261.

    Article  Google Scholar 

  • McGue, M., Zhang, Y., Miller, M. B., Basu, S., Vrieze, S., Hicks, B., et al. (2013). A genome-wide association study of behavioral disinhibition. Behavior Genetics,43(5), 363–373.

    Article  Google Scholar 

  • Moor, M. M., Willemsen, G., Rebollo-Mesa, I., Stubbe, J., Geus, E. C., & Boomsma, D. (2011). Exercise participation in adolescents and their parents: Evidence for genetic and generation specific environmental effects. Behavior Genetics,41, 211–222.

    Article  Google Scholar 

  • Oster, E., Shoulson, I., Quaid, K., & Dorsey, E. A. (2010). Genetic adverse selection: Evidence from long-term care insurance and Huntington disease. Journal of Public Economics,94, 1041–1050.

    Article  Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Gjessing, H. K. (2008). Biometrical modeling of twin and family data using standard mixed model software. Biometrics,64, 280–288.

    Article  CAS  Google Scholar 

  • Romeis, J. C., Heath, A. C., Xian, H., Eisen, S. A., Scherrer, J. F., Pedersen, N. L., et al. (2005). Heritability of SF-36 among middle-age, middle-class, male-male twins. Medical Care,43(11), 1147–1154.

    Article  Google Scholar 

  • Romeis, J., Scherrer, J., Xian, H., Eisen, S., Bucholz, K., Health, A., et al. (2000). Heritability of self-reported health status. Health Services Research,35(5 Part 1), 995–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey, D., Clarke, T. K., & Schumann, G. (2009). The genetics of alcoholism. Current Psychiatry Reports,11(5), 364–369.

    Article  Google Scholar 

  • Stubbe, J. H., Boomsma, D. I., Vink, J. M., Cornes, B. K., Martin, N. G., Skytthe, A., et al. (2006). Genetic influences on exercise participation in 37,051 twin pairs from seven countries. PLoS ONE,1(1), e22.

    Article  Google Scholar 

  • Thomsen, S. F., Van Der Sluis, S., Kyvik, K. O., Skytthe, A., & Backer, V. (2010). Estimates of asthma heritability in a large twin sample. Clinical and Experimental Allergy,40(7), 1054–1061.

    Article  CAS  Google Scholar 

  • Treloar, S. A., McDonald, C. A., & Martin, N. G. (1999). Genetics of early cancer detection behaviours in Australian female twins. Twin Research,2(01), 33–42.

    Article  CAS  Google Scholar 

  • True, W. R., Romeis, J. C., Heath, A. C., Flick, L. H., Shaw, L., Eisen, S. A., et al. (1997). Genetic and environmental contributions to healthcare need and utilization: A twin analysis. Health Services Research,32, 37–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trumbetta, S. L., Markowitz, E. M., & Gottesman, I. I. (2007). Marriage and genetic variation across the lifespan: Not a steady relationship? Behavior Genetics,37(2), 362–375.

    Article  Google Scholar 

  • van der Loos, M., Rietveld, C. A., Eklund, N., et al. (2013). The molecular genetic architecture of self-employment. PLoS ONE,8(4), e60542. https://doi.org/10.1371/journal.pone.0060542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhulst, B. (2013). Gene-environment interplay in twin models. Political Analysis,21(3), 368–389.

    Article  Google Scholar 

  • Wehby, G. L., Domingue, B. W., & Boardman, J. D. (2015). Prevention, use of health services, and genes: Implications of genetics for policy formation. Journal of Policy Analysis and Management,34(3), 519–536.

    Article  Google Scholar 

  • Wehby, G. L., Domingue, B. W., Ullrich, F., & Wolinsky, F. D. (2017). Genetic predisposition to obesity and medicare expenditures. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences,73(1), 66–72.

    Article  Google Scholar 

  • Wehby, G. L., Domingue, B. W., & Wolinsky, F. D. (2018). Genetic risks for chronic conditions: Implications for long-term wellbeing. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences,73(4), 477–483.

    Article  Google Scholar 

  • Wolinsky, F. D., Jones, M. P., Ullrich, F., Lou, Y., & Wehby, G. L. (2014). The concordance of survey reports and medicare claims in a nationally representative longitudinal cohort of older adults. Medical Care,52(5), 462–468.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. Wehby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wehby, G.L., Shane, D. Genetic variation in health insurance coverage. Int J Health Econ Manag. 19, 301–316 (2019). https://doi.org/10.1007/s10754-018-9255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10754-018-9255-y

Keywords

JEL Classification

Navigation