Skip to main content

Advertisement

Log in

Mass Spectrometry-Based Proteomics Analysis Unveils PTPRS Inhibits Proliferation and Inflammatory Response of Keratinocytes in Psoriasis

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

In this study, we used data-independent acquisition-mass spectrometry (DIA-MS) to analyze the serum proteome in psoriasis vulgaris (PsO). The serum proteomes of seven healthy controls and eight patients with PsO were analyzed using DIA-MS. Weighted gene co-expression network analysis was used to identify differentially expressed proteins (DEPs) that were closely related to PsO. Hub proteins of PsO were also identified. The Proteomics Drug Atlas 2023 was used to predict candidate hub protein drugs. To confirm the expression of the candidate factor, protein tyrosine phosphatase receptor S (PTPRS), in psoriatic lesions and the psoriatic keratinocyte model, immunohistochemical staining, quantitative real-time polymerase chain reaction, and western blotting were performed. A total of 129 DEPs were found to be closely related to PsO. The hub proteins for PsO were PVRL1, FGFR1, PTPRS, CDH2, CDH1, MCAM, and THY1. Five candidate hub protein drugs were identified: encorafenib, leupeptin, fedratinib, UNC 0631, and SCH 530348. PTPRS was identified as a common pharmacological target for these five drugs. PTPRS knockdown in keratinocytes promoted the proliferation and expression of IL-1α, IL-1β, IL-23A, TNF-α, MMP9, CXCL8, and S100A9. PTPRS expression was decreased in PsO, and PTPRS negatively regulated PsO. PTPRS may be involved in PsO pathogenesis through the inhibition of keratinocyte proliferation and inflammatory responses and is a potential treatment target for PsO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in this study are available in the main body of the manuscript and supplementary information.

References

  1. Ghoreschi, K., A. Balato, C. Enerbäck, and R. Sabat. 2021. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet (London, England) 397 (10275): 754–766. https://doi.org/10.1016/s0140-6736(21)00184-7.

    Article  CAS  PubMed  Google Scholar 

  2. Griffiths, C.E.M., A.W. Armstrong, J.E. Gudjonsson, and J. Barker. 2021. Psoriasis. Lancet (London, England) 397 (10281): 1301–1315. https://doi.org/10.1016/s0140-6736(20)32549-6.

    Article  CAS  PubMed  Google Scholar 

  3. Ni, X., and Y. Lai. 2020. Keratinocyte: A trigger or an executor of psoriasis? Journal of Leukocyte Biology 108 (2): 485–491. https://doi.org/10.1002/jlb.5mr0120-439r.

    Article  CAS  PubMed  Google Scholar 

  4. Vičić, M., M. Kaštelan, I. Brajac, V. Sotošek, and L.P. Massari. 2021. Current concepts of psoriasis immunopathogenesis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms222111574.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Armstrong, A.W., and C. Read. 2020. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA 323 (19): 1945–1960. https://doi.org/10.1001/jama.2020.4006.

    Article  CAS  PubMed  Google Scholar 

  6. Chularojanamontri, L., N. Charoenpipatsin, N. Silpa-Archa, C. Wongpraparut, and V. Thongboonkerd. 2019. Proteomics in psoriasis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20051141.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lou R, Tang P, Ding K, Li S, Tian C, Li Y, et al. 2020. Hybrid spectral library combining DIA-MS data and a targeted virtual library substantially deepens the proteome coverage. iScience 23(3): 100903. https://doi.org/10.1016/j.isci.2020.100903.

  8. Kitata, R.B., J.C. Yang, and Y.J. Chen. 2023. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. Mass Spectrometry Reviews 42 (6): 2324–2348. https://doi.org/10.1002/mas.21781.

    Article  CAS  PubMed  Google Scholar 

  9. Li, Y., P. Lin, S. Wang, S. Li, R. Wang, L. Yang, et al. 2020. Quantitative analysis of differentially expressed proteins in psoriasis vulgaris using tandem mass tags and parallel reaction monitoring. Clinical Proteomics 17: 30. https://doi.org/10.1186/s12014-020-09293-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitchell, D.C., M. Kuljanin, J. Li, J.G. Van Vranken, N. Bulloch, D.K. Schweppe, et al. 2023. A proteome-wide atlas of drug mechanism of action. Nature Biotechnology 41 (6): 845–857. https://doi.org/10.1038/s41587-022-01539-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie, Z., A. Bailey, M.V. Kuleshov, D.J.B. Clarke, J.E. Evangelista, S.L. Jenkins, et al. 2021. Gene set knowledge discovery with enrichr. Current Protocols 1 (3): e90. https://doi.org/10.1002/cpz1.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuleshov, M.V., M.R. Jones, A.D. Rouillard, N.F. Fernandez, Q. Duan, Z. Wang, et al. 2016. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research 44 (W1): W90–W97. https://doi.org/10.1093/nar/gkw377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, E.Y., C.M. Tan, Y. Kou, Q. Duan, Z. Wang, G.V. Meirelles, et al. 2013. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14: 128. https://doi.org/10.1186/1471-2105-14-128.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johnson, E.C.B., E.B. Dammer, D.M. Duong, L. Ping, M. Zhou, L. Yin, et al. 2020. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine 26 (5): 769–780. https://doi.org/10.1038/s41591-020-0815-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bunin, A., V. Sisirak, H.S. Ghosh, L.T. Grajkowska, Z.E. Hou, M. Miron, et al. 2015. Protein tyrosine phosphatase PTPRS is an inhibitory receptor on human and murine plasmacytoid dendritic cells. Immunity 43 (2): 277–288. https://doi.org/10.1016/j.immuni.2015.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X., S. Wang, W. Wang, L. Song, S. Feng, J. Wang, et al. 2022. Extracellular CIRP upregulates proinflammatory cytokine expression via the NF-kappaB and ERK1/2 signaling pathways in psoriatic keratinocytes. Mediators of Inflammation 2022: 5978271. https://doi.org/10.1155/2022/5978271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Teixeira, G.G., N.L. Mari, J.C.C. de Paula, C. Cataldi de Alcantara, T. Flauzino, M.A.B. Lozovoy, et al. 2020. Cell adhesion molecules, plasminogen activator inhibitor type 1, and metabolic syndrome in patients with psoriasis. Clinical and Experimental Medicine 20 (1): 39–48. https://doi.org/10.1007/s10238-019-00595-2.

    Article  CAS  PubMed  Google Scholar 

  18. Čabrijan, L., and J. Lipozenčić. 2011. Adhesion molecules in keratinocytes. Clinics in Dermatology 29 (4): 427–431. https://doi.org/10.1016/j.clindermatol.2011.01.012.

    Article  PubMed  Google Scholar 

  19. Visser, M.J.E., G. Tarr, and E. Pretorius. 2021. Thrombosis in psoriasis: Cutaneous cytokine production as a potential driving force of haemostatic dysregulation and subsequent cardiovascular risk. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2021.688861.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen, J., Z. Zhu, Q. Li, Y. Lin, E. Dang, H. Meng, et al. 2021. Neutrophils enhance cutaneous vascular dilation and permeability to aggravate psoriasis by releasing matrix metallopeptidase 9. The Journal of Investigative Dermatology 141 (4): 787–799. https://doi.org/10.1016/j.jid.2020.07.028.

    Article  CAS  PubMed  Google Scholar 

  21. Chiang, C.C., W.J. Cheng, M. Korinek, C.Y. Lin, and T.L. Hwang. 2019. Neutrophils in psoriasis. Frontiers in Immunology 10: 2376. https://doi.org/10.3389/fimmu.2019.02376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sobolev, V.V., A.G. Soboleva, E.V. Denisova, E.A. Pechatnikova, E. Dvoryankova, I.M. Korsunskaya, et al. 2022. Proteomic studies of psoriasis. Biomedicines. https://doi.org/10.3390/biomedicines10030619.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang, J., M. Suárez-Fariñas, Y. Estrada, M.L. Parker, L. Greenlees, G. Stephens, et al. 2017. Identification of unique proteomic signatures in allergic and non-allergic skin disease. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 47 (11): 1456–1467. https://doi.org/10.1111/cea.12979.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, N.Y., J.H. Back, J.H. Shin, M.J. Ji, S.J. Lee, Y.E. Park, et al. 2023. Quantitative proteomic analysis of human serum using tandem mass tags to predict cardiovascular risks in patients with psoriasis. Scientific Reports 13 (1): 2869. https://doi.org/10.1038/s41598-023-30103-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu, M., J. Deng, K. Xu, T. Zhu, L. Han, Y. Yan, et al. 2019. In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicine. Theranostics 9 (9): 2475–2488. https://doi.org/10.7150/thno.31144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duraivelan, K., and D. Samanta. 2021. Emerging roles of the nectin family of cell adhesion molecules in tumour-associated pathways. Biochimica et Biophysica Acta Reviews on Cancer 1876 (2): 188589. https://doi.org/10.1016/j.bbcan.2021.188589.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, B., C. Li, G. Chang, and H. Wang. 2022. Dihydroartemisinin targets fibroblast growth factor receptor 1 (FGFR1) to inhibit interleukin 17A (IL-17A)-induced hyperproliferation and inflammation of keratinocytes. Bioengineered 13 (1): 1530–1540. https://doi.org/10.1080/21655979.2021.2021701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blaschuk, O.W. 2022. Potential therapeutic applications of N-Cadherin antagonists and agonists. Frontiers in Cell and Developmental Biology 10: 866200. https://doi.org/10.3389/fcell.2022.866200.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Choudhary, S., R. Anand, D. Pradhan, B. Bastia, S.N. Kumar, H. Singh, et al. 2021. Transcriptomic landscaping of core genes and pathways of mild and severe psoriasis vulgaris. International Journal of Molecular Medicine 47 (1): 219–231. https://doi.org/10.3892/ijmm.2020.4771.

    Article  CAS  PubMed  Google Scholar 

  30. Mehta, N.N., P.K. Dagur, S.M. Rose, H.B. Naik, E. Stansky, J. Doveikis, et al. 2015. IL-17A production in human psoriatic blood and lesions by CD146+ T cells. The Journal of Investigative Dermatology 135 (1): 311–314. https://doi.org/10.1038/jid.2014.317.

    Article  PubMed  Google Scholar 

  31. Wetzel, A., T. Wetzig, U.F. Haustein, M. Sticherling, U. Anderegg, J.C. Simon, et al. 2006. Increased neutrophil adherence in psoriasis: Role of the human endothelial cell receptor Thy-1 (CD90). The Journal of Investigative Dermatology 126 (2): 441–452. https://doi.org/10.1038/sj.jid.5700072.

    Article  CAS  PubMed  Google Scholar 

  32. van Kester, M.S., S.A.C. Luelmo, M.H. Vermeer, C. Blank, and R. van Doorn. 2018. Remission of psoriasis during treatment with sorafenib. JAAD Case Reports 4 (10): 1065–1067. https://doi.org/10.1016/j.jdcr.2018.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fournier, C., and G. Tisman. 2010. Sorafenib-associated remission of psoriasis in hypernephroma: Case report. Dermatology Online Journal 16 (2): 17.

    Article  PubMed  Google Scholar 

  34. Antoniou, E.A., I. Koutsounas, C. Damaskos, and S. Koutsounas. 2016. Remission of psoriasis in a patient with hepatocellular carcinoma treated with sorafenib. In Vivo (Athens, Greece) 30 (5): 677–680.

    PubMed  Google Scholar 

  35. Xu, D., and J. Wang. 2021. Downregulation of cathepsin B reduces proliferation and inflammatory response and facilitates differentiation in human HaCaT keratinocytes, ameliorating IL-17A and SAA-induced psoriasis-like lesion. Inflammation 44 (5): 2006–2017. https://doi.org/10.1007/s10753-021-01477-0.

    Article  CAS  PubMed  Google Scholar 

  36. Blair, H.A. 2019. Fedratinib: First approval. Drugs 79 (15): 1719–1725. https://doi.org/10.1007/s40265-019-01205-x.

    Article  CAS  PubMed  Google Scholar 

  37. Damsky, W., and B.A. King. 2017. JAK inhibitors in dermatology: The promise of a new drug class. Journal of the American Academy of Dermatology 76 (4): 736–744. https://doi.org/10.1016/j.jaad.2016.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Punwani, N., T. Burn, P. Scherle, R. Flores, J. Shi, P. Collier, et al. 2015. Downmodulation of key inflammatory cell markers with a topical Janus kinase 1/2 inhibitor. The British Journal of Dermatology 173 (4): 989–997. https://doi.org/10.1111/bjd.13994.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, J., F. Qi, J. Dong, Y. Tan, L. Gao, and F. Liu. 2022. Application of baricitinib in dermatology. Journal of Inflammation Research 15: 1935–1941. https://doi.org/10.2147/jir.S356316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, F., D. Barsyte-Lovejoy, A. Allali-Hassani, Y. He, J.M. Herold, X. Chen, et al. 2011. Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. Journal of Medicinal Chemistry 54 (17): 6139–6150. https://doi.org/10.1021/jm200903z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fang, Z., Y. Wang, B. Huang, X. Chen, R. Jiang, and M. Yin. 2023. Depletion of G9A attenuates imiquimod-induced psoriatic dermatitis via targeting EDAR-NF-κB signaling in keratinocyte. Cell Death & Disease 14 (9): 627. https://doi.org/10.1038/s41419-023-06134-y.

    Article  CAS  Google Scholar 

  42. Billi, A.C., J.E. Ludwig, Y. Fritz, R. Rozic, W.R. Swindell, L.C. Tsoi, et al. 2020. KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease. The Journal of Clinical Investigation 130 (6): 3151–3157. https://doi.org/10.1172/jci133159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cornejo, F., B.I. Cortés, G.M. Findlay, and G.I. Cancino. 2021. LAR receptor tyrosine phosphatase family in healthy and diseased brain. Frontiers in Cell and Developmental Biology 9: 659951. https://doi.org/10.3389/fcell.2021.659951.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ren, J.Y., Y.H. Gu, X.W. Cui, M.M. Long, W. Wang, C.J. Wei, et al. 2020. Protein tyrosine phosphatase receptor S acts as a metastatic suppressor in malignant peripheral nerve sheath tumor via profilin 1-induced epithelial-mesenchymal transition 8: 582220. Frontiers in Cell and Developmental Biology.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Davis, T.B., M. Yang, M.J. Schell, H. Wang, L. Ma, W.J. Pledger, et al. 2018. PTPRS regulates colorectal cancer RAS pathway activity by inactivating erk and preventing its nuclear translocation. Scientific Reports 8 (1): 9296. https://doi.org/10.1038/s41598-018-27584-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Z.C., Q. Gao, J.Y. Shi, W.J. Guo, L.X. Yang, X.Y. Liu, et al. 2015. Protein tyrosine phosphatase receptor S acts as a metastatic suppressor in hepatocellular carcinoma by control of epithermal growth factor receptor-induced epithelial-mesenchymal transition. Hepatology (Baltimore, MD) 62 (4): 1201–1214. https://doi.org/10.1002/hep.27911.

    Article  CAS  PubMed  Google Scholar 

  47. Han, K.A., J.S. Ko, G. Pramanik, J.Y. Kim, K. Tabuchi, J.W. Um, et al. 2018. PTPσ drives excitatory presynaptic assembly via various extracellular and intracellular mechanisms. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 38 (30): 6700–6721. https://doi.org/10.1523/jneurosci.0672-18.2018.

    Article  CAS  PubMed  Google Scholar 

  48. Ohtake, Y., W. Kong, R. Hussain, M. Horiuchi, M.L. Tremblay, D. Ganea, et al. 2017. Protein tyrosine phosphatase σ regulates autoimmune encephalomyelitis development. Brain, Behavior, and Immunity 65: 111–124. https://doi.org/10.1016/j.bbi.2017.05.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ohtake, Y., A. Saito, and S. Li. 2018. Diverse functions of protein tyrosine phosphatase σ in the nervous and immune systems. Experimental Neurology 302: 196–204. https://doi.org/10.1016/j.expneurol.2018.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murchie, R., C.H. Guo, A. Persaud, A. Muise, and D. Rotin. 2014. Protein tyrosine phosphatase σ targets apical junction complex proteins in the intestine and regulates epithelial permeability. Proceedings of the National Academy of Sciences of the United States of America 111 (2): 693–698. https://doi.org/10.1073/pnas.1315017111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Doody, K.M., S.M. Stanford, C. Sacchetti, M.N. Svensson, C.H. Coles, N. Mitakidis, et al. 2015. Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy. Science Translational Medicine 7 (288): 288ra76. https://doi.org/10.1126/scitranslmed.aaa4616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Greb, J.E., A.M. Goldminz, J.T. Elder, M.G. Lebwohl, D.D. Gladman, J.J. Wu, et al. 2016. Psoriasis. Nature Reviews Disease Primers 2: 10682. https://doi.org/10.1038/nrdp.2016.82.

    Article  PubMed  Google Scholar 

  53. Hu, P., M. Wang, H. Gao, A. Zheng, J. Li, D. Mu, et al. 2021. The role of helper T cells in psoriasis. Frontiers in Immunology 12: 788940. https://doi.org/10.3389/fimmu.2021.788940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hawkes, J.E., T.C. Chan, and J.G. Krueger. 2017. Psoriasis pathogenesis and the development of novel targeted immune therapies. The Journal of Allergy and Clinical Immunology 140 (3): 645–653. https://doi.org/10.1016/j.jaci.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  55. Singh, R., S. Koppu, P.O. Perche, and S.R. Feldman. 2021. The cytokine mediated molecular pathophysiology of psoriasis and its clinical implications. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms222312793.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bou-Dargham, M.J., Z.I. Khamis, A.B. Cognetta, and Q.A. Sang. 2017. The role of interleukin-1 in inflammatory and malignant human skin diseases and the rationale for targeting interleukin-1 alpha. Medicinal Research Reviews 37 (1): 180–216. https://doi.org/10.1002/med.21406.

    Article  CAS  PubMed  Google Scholar 

  57. Cai, Y., F. Xue, C. Quan, M. Qu, N. Liu, Y. Zhang, et al. 2019. A critical role of the IL-1β-IL-1R signaling pathway in skin inflammation and psoriasis pathogenesis. The Journal of Investigative Dermatology 139 (1): 146–156. https://doi.org/10.1016/j.jid.2018.07.025.

    Article  CAS  PubMed  Google Scholar 

  58. Hawkes, J.E., B.Y. Yan, T.C. Chan, and J.G. Krueger. 2018. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. Journal of Immunology (Baltimore, Md : 1950) 201 (6): 1605–1613. https://doi.org/10.4049/jimmunol.1800013.

    Article  CAS  PubMed  Google Scholar 

  59. Ogawa, E., Y. Sato, A. Minagawa, and R. Okuyama. 2018. Pathogenesis of psoriasis and development of treatment. The Journal of Dermatology 45 (3): 264–272. https://doi.org/10.1111/1346-8138.14139.

    Article  CAS  PubMed  Google Scholar 

  60. Schonthaler, H.B., J. Guinea-Viniegra, S.K. Wculek, I. Ruppen, P. Ximénez-Embún, A. Guío-Carrión, et al. 2013. S100A8-S100A9 protein complex mediates psoriasis by regulating the expression of complement factor C3. Immunity 39 (6): 1171–1181. https://doi.org/10.1016/j.immuni.2013.11.011.

    Article  CAS  PubMed  Google Scholar 

  61. Lee, Y., S. Jang, J.K. Min, K. Lee, K.C. Sohn, J.S. Lim, et al. 2012. S100A8 and S100A9 are messengers in the crosstalk between epidermis and dermis modulating a psoriatic milieu in human skin. Biochemical and Biophysical Research Communications 423 (4): 647–653. https://doi.org/10.1016/j.bbrc.2012.05.162.

    Article  CAS  PubMed  Google Scholar 

  62. Kvist-Hansen, A., H. Kaiser, X. Wang, M. Krakauer, P.M. Gørtz, B.D. McCauley, et al. 2021. Neutrophil pathways of inflammation characterize the blood transcriptomic signature of patients with psoriasis and cardiovascular disease. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms221910818.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shanghai Applied Protein Technology Co., Ltd. for their help with proteomics data acquisition.

Funding

This research was funded by the Science-Health Joint Medical Research Project of Chongqing, grant number 2020FYYX017 to KH, the National Natural Science Foundation of China, grant number 81972942 to KH, the Chongqing Innovative Support Program for Returned Overseas Chinese Scholars grant number cx2020103 to KH, and the High-level Medical Reserved Personnel Training Project of Chongqing grant number 2020GDRC028 to KH.

Author information

Authors and Affiliations

Authors

Contributions

Kun Huang conceived and supervised the study. Xuyu Zheng, Cui Zhou, and Yulian Hu performed the literature review and drafted the manuscript. Xuyu Zheng, Shihao Xu and Xin Tang contributed to experimental data collection and analysis. Li Hu, Biyu Li, Xiaoqin Zhao, and Qian Li prepared the figures. Xuyu Zheng and Cui Zhou contributed to the critical revision of the manuscript. All authors approved the final manuscript and agreed to take responsibility for all aspects of the work.

Corresponding author

Correspondence to Kun Huang.

Ethics declarations

Institutional Review Board

The study was conducted in accordance with the Declaration of Helsinki and was approved by the ethics committee of the First Affiliated Hospital of Chongqing Medical University (no. 20228201).

Informed Consent

Informed consent was obtained from all the participants involved in the study.

Consent to Participate

Written informed consent was obtained from the patients.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Zhou, C., Hu, Y. et al. Mass Spectrometry-Based Proteomics Analysis Unveils PTPRS Inhibits Proliferation and Inflammatory Response of Keratinocytes in Psoriasis. Inflammation (2024). https://doi.org/10.1007/s10753-024-02044-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02044-z

KEY WORDS

Navigation