Skip to main content
Log in

Silencing DDX3 Attenuates Interleukin-1β-Induced Intervertebral Disc Degeneration Through Inhibiting Pyroptosis

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Intervertebral disc degeneration (IVDD) is a common disorder associated with chronic inflammation and cell death. In this study, an IVDD rat model was created through Interleukin-1β (IL-1β) injection. The degeneration of intervertebral disc tissues was assessed using magnetic resonance imaging (MRI), followed by hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining. RNA sequencing was performed to identify differentially expressed genes (DEGs) between the IVDD model and control rats. The expression levels of DEGs (DEAD-box polypeptide 3 (DDX3), lysine-specific demethylase 5D (KDM5D), interferon-induced gene-1 (IFIT1), ribosomal protein S10 (RPS10), tenomodulin (TNMD), and pentraxin 3 (PTX3)) were measured by real-time quantitative polymerase chain reaction (RT-qPCR). The regulatory effect of DDX3 on pyroptosis in IL-1β-treated nucleus pulpous (NP) cells was assessed after transfection with siRNA of DDX3. A total of 601 DEGs were identified from the IVDD model rat, and were abundant in extracellular matrix (ECM) organization, ECM-receptor interaction, and inflammatory pathways, including the PI3K-Akt, TNF, and AMPK signaling pathways. DDX3, KDM5D, and IFIT1 levels were notably elevated, whereas RPS10, TNMD, and PTX3 levels were decreased in the IL-1β-induced IVDD rat model. Moreover, silencing DDX3 promoted cell proliferation and abolished IL-1β-induced cell apoptosis and pyroptosis. This study revealed the role of DDX3 in IVDD pyroptosis, providing potential target for IVDD management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Hartvigsen, J., M. Hancock, A. Kongsted, Q. Louw, M. Ferreira, S. Genevay, et al. 2018. What low back pain is and why we need to pay attention. 391 (10137): 2356–2367.

  2. Ekşi, M.Ş, E.E. Özcan-Ekşi, B.B. Özmen, V.U. Turgut, S.E. Huet, T. Dinç, et al. 2020. Lumbar intervertebral disc degeneration, end-plates and paraspinal muscle changes in children and adolescents with low-back pain. Journal of Pediatric Orthopaedics B 31 (1): 93–102.

    Article  Google Scholar 

  3. Choi, H., I. Johnson, and Z, V Risbud M. 2015. Understanding nucleus pulposus cell phenotype: a prerequisite for stem cell based therapies to treat intervertebral disc degeneration. Current Stem Cell Research Therapy 10 (4): 307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martirosyan, N.L., A.A. Patel, A. Carotenuto, M.Y.S. Kalani, E. Belykh, C.T. Walker, et al. 2016. Genetic alterations in intervertebral disc disease. Frontiers in Surgery 3: 59.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Oichi, T., Y. Taniguchi, Y. Oshima, S. Tanaka, and T. Saito. 2020. Pathomechanism of intervertebral disc degeneration. JOR Spine 3 (1): e1076.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mohd Isa, I.L., S.A. Mokhtar, S.A. Abbah, M.B. Fauzi, A. Devitt, and A. Pandit. 2022. Intervertebral Disc Degeneration: Biomaterials and Tissue Engineering Strategies toward Precision Medicine. Advanced Healthcare Materials 11 (13): e2102530-1.

    Article  PubMed  Google Scholar 

  7. Díez-Ulloa MJJoistojotAoSR. 2022. On disc degeneration models. Commentary on: Intervertebral Disc Degeneration Models for Pathophysiology and Regenerative Therapy - Benefits and Limitations 35 (4): 953–4.

    Google Scholar 

  8. Yu, P., X. Zhang, N. Liu, L. Tang, C. Peng, and X. Chen. 2021. Pyroptosis: Mechanisms and diseases. Signal Transduction and Targeted Therapy 6 (1): 128.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang, F., S.N. Bettadapura, M.S. Smeltzer, H. Zhu, and S. Wang. 2022. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacologica Sinica 43 (10): 2462–2473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burdette, B.E., A.N. Esparza, H. Zhu, and S. Wang. 2021. Gasdermin D in pyroptosis. Acta Pharmaceutica Sinica B 11 (9): 2768–2782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhaolin, Z., L. Guohua, W. Shiyuan, and W. Zuo. 2019. Role of pyroptosis in cardiovascular disease. Cell Proliferation 52 (2): e12563.

    Article  PubMed  Google Scholar 

  12. McKenzie, B.A., V.M. Dixit, and C. Power. 2020. Fiery cell death: Pyroptosis in the central nervous system. Trends in Neurosciences 43 (1): 55–73.

    Article  CAS  PubMed  Google Scholar 

  13. Man, S.M., R. Karki, and T.D. Kanneganti. 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunological Reviews 277 (1): 61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rao, Z., Y. Zhu, P. Yang, Z. Chen, Y. Xia, C. Qiao, et al. 2022. Pyroptosis in inflammatory diseases and cancer. Theranostics 12 (9): 4310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, K., R. An, Q. Xiang, G. Li, K. Wang, Y. Song, et al. 2021. Acid-sensing ion channels regulate nucleus pulposus cell inflammation and pyroptosis via the NLRP3 inflammasome in intervertebral disc degeneration. Cell Proliferation 54 (1): e12941.

    Article  CAS  PubMed  Google Scholar 

  16. Tang, G., X. Han, Z. Lin, H. Qian, B. Chen, C. Zhou, et al. 2021. Propionibacterium acnes accelerates intervertebral disc degeneration by inducing pyroptosis of nucleus pulposus cells via the ROS-NLRP3 pathway. Oxidative Medicine and Cellular Longevity

  17. Zhang, J., J. Zhang, Y. Zhang, W. Liu, W. Ni, X. Huang, et al. 2020. Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis. Journal of Cellular and Molecular Medicine 24 (20): 11742–11754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bol, G.M., M. Xie, and V. Raman. 2015. DDX3, a potential target for cancer treatment. Molecular Cancer 14 (1): 1–16.

    Article  CAS  Google Scholar 

  19. Hernández-Díaz, T., F. Valiente-Echeverría, and R. Soto-Rifo. 2021. RNA helicase DDX3: A double-edged sword for viral replication and immune signaling. Microorganisms 9 (6): 1206.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen, Y., Q. Wang, Q. Wang, H. Liu, F. Zhou, Y. Zhang, et al. 2017. DDX3 binding with CK1ε was closely related to motor neuron degeneration of ALS by affecting neurite outgrowth. American Journal of Translational Research 9 (10): 4627.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng, D., L. Guo, J. Liu, Y. Song, X. Ma, H. Hu, et al. 2021. DDX3X deficiency alleviates LPS-induced H9c2 cardiomyocytes pyroptosis by suppressing activation of NLRP3 inflammasome. Experimental and Therapeutic Medicine 22 (6): 1–9.

    Article  CAS  Google Scholar 

  22. Chi, S., S. Li, Z. Xu, G. Yang, Y. Song, Z. Liao, et al. 2023. The involvement of DDX3X in compression-induced nucleus pulposus pyroptosis. Biochemical and Biophysical Research Communications 655: 1–10.

    Article  CAS  PubMed  Google Scholar 

  23. Kim, H., J.Y. Hong, J. Lee, W.-J. Jeon, and I.-H. Ha. 2021. IL-1β promotes disc degeneration and inflammation through direct injection of intervertebral disc in a rat lumbar disc herniation model. The Spine Journal 21 (6): 1031–1041.

    Article  PubMed  Google Scholar 

  24. Pfirrmann, C.W., A. Metzdorf, M. Zanetti, J. Hodler, and N. Boos. 2001. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26 (17): 1873–8.

    Article  CAS  PubMed  Google Scholar 

  25. Anders, S., W. Huber. 2010. Differential expression analysis for sequence count data. Nature Precedings 1.

  26. Wickham, H. 2011. ggplot2. Wiley interdisciplinary reviews: Computational statistics 3 (2): 180–185.

    Article  Google Scholar 

  27. Kolde, R., and M.R. Kolde. 2015. Package ‘pheatmap.’ R package 1 (7): 790.

    Google Scholar 

  28. Merico, D., R. Isserlin, O. Stueker, A. Emili, and G.D. Bader. 2010. Enrichment map: A network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 5 (11): e13984.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang, H., W. Tian, S. Wang, X. Liu, Z. Wang, L. Hou, et al. 2018. TSG-6 secreted by bone marrow mesenchymal stem cells attenuates intervertebral disc degeneration by inhibiting the TLR2/NF-κB signaling pathway. Laboratory Investigation 98 (6): 755–772.

    Article  CAS  PubMed  Google Scholar 

  30. Samir, P., S. Kesavardhana, D. Patmore, S. Gingras, R. Malireddi, R. Karki, et al. 2019. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. 573 (7775): 590–4.

  31. Yang, X., Y. Lu, H. Zhou, H.T. Jiang, and L. Chu. 2023. Integrated proteome sequencing, bulk RNA sequencing and single-cell RNA sequencing to identify potential biomarkers in different grades of intervertebral disc degeneration. Frontiers in Cell and Developmental Biology 11: 1136777.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, H., X. Wang, H. Pan, C. Xiao, C. Wang, S. Guo, et al. 2023. The mechanisms and functions of IL-1β in intervertebral disc degeneration. Experimental Gerontology 177: 112181.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, A., N. Kumar, Z. Pathak, and H. Kumar. 2022. Extra cellular matrix remodeling: An adjunctive target for spinal cord injury and intervertebral disc degeneration. Neurospine 19 (3): 632–645.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pereira, C.L., G.Q. Teixeira, C. Ribeiro-Machado, J. Caldeira, M. Costa, F. Figueiredo, et al. 2016. Mesenchymal stem/stromal cells seeded on cartilaginous endplates promote intervertebral disc regeneration through extracellular matrix remodeling. Scientific Reports 6 (1): 33836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Y., F. He, Z. Chen, Q. Su, M. Yan, Q. Zhang, et al. 2019. Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging (albany NY) 11 (22): 10499.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, K., T. Chen, X. Ying, Z. Zhang, Z. Shao, J. Lin, et al. 2019. Ligustilide alleviated IL-1β induced apoptosis and extracellular matrix degradation of nucleus pulposus cells and attenuates intervertebral disc degeneration in vivo. International Immunopharmacology 69: 398–407.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y., M. Che, J. Xin, Z. Zheng, J. Li, and S. Zhang. 2020. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomedicine and Pharmacotherapy 131: 110660.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, C., H. Fei, Z. Sun, and J. Tian. 2015. Bioinformatic analysis of the microarray gene expression profile in degenerative intervertebral disc cells exposed to TNF-α. European Review for Medical and Pharmacological Sciences 19 (18): 3332–3339.

    CAS  PubMed  Google Scholar 

  39. Ferreira, J., G. Teixeira, E. Neto, C. Ribeiro-Machado, A. Silva, J. Caldeira, et al. 2021. IL-1β-pre-conditioned mesenchymal stem/stromal cells’ secretome modulates the inflammatory response and aggrecan deposition in intervertebral disc. European Cells & Materials 41: 431–453.

    Article  CAS  Google Scholar 

  40. Yuan, Y., X. Fan, Guo, Z. Zhou, and W. Gao. 2022. Metformin protects against spinal cord injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Analytical Cellular Pathology.

  41. Zhang, W., Y. Gong, X. Zheng, J. Qiu, T. Jiang, L. Chen, et al. 2022. Platelet-derived growth factor-BB inhibits intervertebral disc degeneration via suppressing pyroptosis and activating the MAPK signaling pathway. Frontiers in Pharmacology 12: 799130.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wu, B., X. Guo, X. Yan, Z. Tian, W. Jiang, and X. He. 2022. TSG-6 inhibits IL-1β-induced inflammatory responses and extracellular matrix degradation in nucleus pulposus cells by activating the PI3K/Akt signaling pathway. Journal of Orthopaedic Surgery and Research 17 (1): 1–9.

    Article  CAS  Google Scholar 

  43. Gong, Y., J. Qiu, T. Jiang, Z. Li, W. Zhang, X. Zheng, et al. 2023. Maltol ameliorates intervertebral disc degeneration through inhibiting PI3K/AKT/NF-κB pathway and regulating NLRP3 inflammasome-mediated pyroptosis. Inflammopharmacology 31 (1): 369–384.

    Article  CAS  PubMed  Google Scholar 

  44. Samir, P., S. Kesavardhana, D.M. Patmore, S. Gingras, R.S. Malireddi, R. Karki, et al. 2019. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature 573 (7775): 590–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Y., Y. Zhang, Q. Liu, T. Li, W. Wang, H. Li, et al. 2023. Inhibition of DDX3X ameliorated CD4+ T cells pyroptosis and improves survival in septic mice. Molecular Immunology 154: 54–60.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, Y., Y. Gui, H. Tang, J. Yu, Z. Yuan, L. Liu, et al. 2021. DDX3X deficiency attenuates pyroptosis induced by oxygen-glucose deprivation/reoxygenation in N2a cells. 

  47. Guo, W., B. Zhang, Y. Li, H.Q. Duan, C. Sun, Y.Q. Xu, et al. 2017. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration. Molecular Medicine Reports 16 (6): 8665–8672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Merten, M., J.F. Greiner, T. Niemann, M. Grosse Venhaus, D. Kronenberg, R. Stange, et al. 2022. Human sex matters: y-linked lysine demethylase 5d drives accelerated male craniofacial osteogenic differentiation. Cells 11 (5): 823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin, D., P. Alberton, M. Delgado Caceres, C. Prein, H. Clausen-Schaumann, J. Dong, et al. 2020. Loss of tenomodulin expression is a risk factor for age-related intervertebral disc degeneration. Aging Cell 19 (3): e13091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pauli, Di., T. von Treuheim, O.M. Torre, E.D. Ferreri, P. Nasser, A. Abbondandolo, M. Delgado Caceres, et al. 2021. Tenomodulin and chondromodulin-1 are both required to maintain biomechanical function and prevent intervertebral disc degeneration. Cartilage 13 (2): 604S–14S.

    Google Scholar 

  51. Wu, Q., F. Cao, J. Tao, X. Li, S.G. Zheng, and H.-F. Pan. 2020. Pentraxin 3: A promising therapeutic target for autoimmune diseases. Autoimmunity Reviews 19 (12): 102584.

    Article  CAS  PubMed  Google Scholar 

  52. Scimeca, M., A. Salustri, E. Bonanno, D. Nardozi, C. Rao, E. Piccirilli, et al. 2017. Impairment of PTX3 expression in osteoblasts: a key element for osteoporosis. Cell Death Disease 8 (10): e3125-e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding to report.

Author information

Authors and Affiliations

Authors

Contributions

All authors had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Conceptualization, H.F.Z.; Methodology, M.H.L. and H.Y.; Investigation, H.J.W. M.L.Z. and M.Z.H.; Formal Analysis, H.F.Z. and M.H.L.; Resources, H.J.W. and M.L.Z.; Writing - Original Draft, H.F.Z. and M.H.L.; Writing - Review & Editing, H.J.W., H.Y., M.L.Z. and M.Z.H.; Supervision, H.F.Z. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Hongfa Zhong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Li, M., Wu, H. et al. Silencing DDX3 Attenuates Interleukin-1β-Induced Intervertebral Disc Degeneration Through Inhibiting Pyroptosis. Inflammation (2024). https://doi.org/10.1007/s10753-024-02042-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02042-1

KEY WORDS

Navigation