Skip to main content
Log in

Oroxylin A-induced Trained Immunity Promotes LC3-associated Phagocytosis in Macrophage in Protecting Mice Against Sepsis

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis is defined as a dysregulated host response to infection that leads to multiorgan failure. Innate immune memory, i.e., “trained immunity”, can result in stronger immune responses and provide protection against various infections. Many biological agents, including β-glucan, can induce trained immunity, but these stimuli may cause uncontrolled inflammation. Oroxylin A (OA) is an active flavonoid compound that is derived from Scutellaria baicalensis. OA is an agonist for inducing trained immunity in vivo and in vitro, and β-glucan was used as a positive control. The protective effects of OA-induced trained immunity were evaluated in mouse models that were established by either lipopolysaccharide (LPS) administration or caecal ligation and puncture (CLP). The expression of inflammatory factors and signaling pathway components involved in trained immunity was evaluated in vitro using qRT‒PCR, western blotting (WB) and enzyme-linked immunosorbent assay (ELISA). Flow cytometry and confocal microscopy were used to examine reactive oxygen species (ROS) levels and phagocytosis in trained macrophages. A PCR array was used to screen genes that were differentially expressed in trained macrophages. Here, we revealed that OA alleviated sepsis via trained immunity. OA-treated macrophages displayed increased glycolysis and mTOR phosphorylation, and mTOR inhibitors suppressed OA-induced trained immunity by effectively reprogramming macrophages. The PCR array revealed key genes in the mTOR signaling pathway in OA-treated macrophages. Furthermore, OA targeted the Dectin-1-syk axis to promote LC3-associated phagocytosis (LAP) by trained macrophages, thereby enhancing the ability of these macrophages to protect against infection. This ability could be transferred to a new host via the adoptive transfer of peritoneal macrophages. This study is the first to provide new insights into the potential of OA-induced trained immunity to be used as a strategy to protect mice against sepsis by promoting LAP by macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

CLL:

Clodronate liposomes

CLP:

Cecal ligation and puncture

CMC-Na:

Carboxymethyl cellulose-Na

DMSO:

Dimethyl sulfoxide

ELISA:

Enzyme-linked immunosorbent assay

H&E:

Hematoxylin and eosin staining

IHC:

Immunohistochemistry

LPS:

Lipopolysaccharid

LAP:

LC3-associated phagocytosis

OA:

Oroxylin A

PFA:

Paraformaldehyde

ROS:

Reactive oxygen species

WB:

Western blotting

References

  1. Paoli, C.J., et al. 2018. Epidemiology and Costs of Sepsis in the United States-An Analysis Based on Timing of Diagnosis and Severity Level. Critical Care Medicine 46 (12): 1889–1897. https://doi.org/10.1097/CCM.0000000000003342.

    Article  PubMed  Google Scholar 

  2. Liu, Z., P. Mahale, and E.A. Engels. 2019. Sepsis and Risk of Cancer Among Elderly Adults in the United States. Clinical Infectious Diseases 68 (5): 717–724. https://doi.org/10.1093/cid/ciy530.

    Article  CAS  PubMed  Google Scholar 

  3. Marakalala, M.J., et al. 2013. Dectin-1 plays a redundant role in the immunomodulatory activities of beta-glucan-rich ligands in vivo. Microbes and Infection 15 (6–7): 511–515. https://doi.org/10.1016/j.micinf.2013.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalafati, L., et al. 2020. Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity. Cell 183 (3): 771-785.e12. https://doi.org/10.1016/j.cell.2020.09.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kleinnijenhuis, J., et al. 2012. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109 (43): 17537–17542. https://doi.org/10.1073/pnas.1202870109.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Naik, S., et al. 2017. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550 (7677): 475–480. https://doi.org/10.1038/nature24271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, C., G. Lin, and Z. Zuo. 2011. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharmaceutics & Drug Disposition 32 (8): 427–445. https://doi.org/10.1002/bdd.771.

    Article  CAS  Google Scholar 

  8. Wei, L., et al. 2017. Oroxylin A activates PKM1/HNF4 alpha to induce hepatoma differentiation and block cancer progression. Cell Death & Disease 8 (7): e2944. https://doi.org/10.1038/cddis.2017.335.

    Article  CAS  Google Scholar 

  9. Huo, T.X., et al. 2022. Oroxylin A inhibits the migration of hepatocellular carcinoma cells by inducing NAG-1 expression. Acta Pharmacologica Sinica 43 (3): 724–734. https://doi.org/10.1038/s41401-021-00695-4.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Y., et al. 2020. Oroxylin A reverses hypoxia-induced cisplatin resistance through inhibiting HIF-1alpha mediated XPC transcription. Oncogene 39 (45): 6893–6905. https://doi.org/10.1038/s41388-020-01474-x.

    Article  CAS  PubMed  Google Scholar 

  11. Tseng, T.L., et al. 2012. Oroxylin-A rescues LPS-induced acute lung injury via regulation of NF-kappaB signaling pathway in rodents. PLoS ONE 7 (10): e47403. https://doi.org/10.1371/journal.pone.0047403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao, J., et al. 2014. Oroxylin A prevents inflammation-related tumor through down-regulation of inflammatory gene expression by inhibiting NF-kappaB signaling. Molecular Carcinogenesis 53 (2): 145–158. https://doi.org/10.1002/mc.21958.

    Article  CAS  PubMed  Google Scholar 

  13. Pan, Y., et al. 2022. beta-glucan-coupled superparamagnetic iron oxide nanoparticles induce trained immunity to protect mice against sepsis. Theranostics 12 (2): 675–688. https://doi.org/10.7150/thno.64874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, Z., et al. 2020. 17beta-Estradiol Promotes Trained Immunity in Females Against Sepsis via Regulating Nucleus Translocation of RelB. Frontiers in Immunology 11: 1591. https://doi.org/10.3389/fimmu.2020.01591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Divangahi, M., et al. 2021. Trained immunity, tolerance, priming and differentiation: Distinct immunological processes. Nature Immunology 22 (1): 2–6. https://doi.org/10.1038/s41590-020-00845-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akoumianaki, T., et al. 2021. Uncoupling of IL-6 signaling and LC3-associated phagocytosis drives immunoparalysis during sepsis. Cell Host Microbe 29 (8): 1277-1293 e6. https://doi.org/10.1016/j.chom.2021.06.002.

    Article  CAS  PubMed  Google Scholar 

  17. Sun, Z., et al. 2021. 17beta-Estradiol promotes LC3B-associated phagocytosis in trained immunity of female mice against sepsis. International Journal of Biological Sciences 17 (2): 460–474. https://doi.org/10.7150/ijbs.53050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanjuan, M.A., et al. 2007. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450 (7173): 1253–1257. https://doi.org/10.1038/nature06421.

    Article  CAS  PubMed  Google Scholar 

  19. Masud, S., et al. 2019. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Autophagy 15 (5): 796–812. https://doi.org/10.1080/15548627.2019.1569297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, H., et al. 2018. Oroxylin A, a natural compound, mitigates the negative effects of TNFalpha-treated acute myelogenous leukemia cells. Carcinogenesis 39 (10): 1292–1303. https://doi.org/10.1093/carcin/bgy004.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, S.C., et al. 2014. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345 (6204): 1250684. https://doi.org/10.1126/science.1250684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayase, N., et al. 2019. Recombinant Thrombomodulin on Neutrophil Extracellular Traps in Murine Intestinal Ischemia-Reperfusion. Anesthesiology 131 (4): 866–882. https://doi.org/10.1097/ALN.0000000000002898.

    Article  CAS  PubMed  Google Scholar 

  23. Yin, L., et al. 2022. LS-007 inhibits melanoma growth via inducing apoptosis and cell cycle arrest and regulating macrophage polarization. Melanoma Research 32 (6): 419–427. https://doi.org/10.1097/CMR.0000000000000853.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, D., et al. 2023. Oroxylin A regulates cGAS DNA hypermethylation induced by methionine metabolism to promote HSC senescence. Pharmacological Research. https://doi.org/10.1016/j.phrs.2022.106590.

    Article  PubMed  Google Scholar 

  25. Ding, C., et al. 2023. Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis. Nature Immunology 24 (2): 239–254. https://doi.org/10.1038/s41590-022-01388-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Dijk, A., et al. 2022. Innate Immune Training of Human Macrophages by Cathelicidin Analogs. Frontiers in Immunology 13: 777530. https://doi.org/10.3389/fimmu.2022.777530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vega-Perez, A., et al. 2021. Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity 54 (11): 2578-2594 e5. https://doi.org/10.1016/j.immuni.2021.10.007.

    Article  CAS  PubMed  Google Scholar 

  28. Dahdah, A., et al. 2014. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. The Journal of Clinical Investigation 124 (10): 4577–4589. https://doi.org/10.1172/JCI75212.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, X., et al. 2011. The beta-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host & Microbe 10 (6): 603–615. https://doi.org/10.1016/j.chom.2011.10.009.

    Article  CAS  Google Scholar 

  30. Park, S.Y., et al. 2008. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death and Differentiation 15 (1): 192–201. https://doi.org/10.1038/sj.cdd.4402242.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, T., et al. 2022. Microglial debris is cleared by astrocytes via C4b-facilitated phagocytosis and degraded via RUBICON-dependent noncanonical autophagy in mice. Nature Communications 13 (1): 6233. https://doi.org/10.1038/s41467-022-33932-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herre, J., et al. 2004. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104 (13): 4038–4045. https://doi.org/10.1182/blood-2004-03-1140.

    Article  CAS  PubMed  Google Scholar 

  33. Moerings, B.G.J., et al. 2022. Dectin-1b activation by arabinoxylans induces trained immunity in human monocyte-derived macrophages. International Journal of Biological Macromolecules 209 (Pt A): 942–950. https://doi.org/10.1016/j.ijbiomac.2022.04.071.

    Article  CAS  PubMed  Google Scholar 

  34. Torres-Hernandez, A., et al. 2019. Targeting SYK signaling in myeloid cells protects against liver fibrosis and hepatocarcinogenesis. Oncogene 38 (23): 4512–4526. https://doi.org/10.1038/s41388-019-0734-5.

    Article  CAS  PubMed  Google Scholar 

  35. Hao, J.W., et al. 2020. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nature Communications 11 (1): 4765. https://doi.org/10.1038/s41467-020-18565-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lagranderie, M., et al. 2011. Mycobacterium bovis Bacillus Calmette-Guerin killed by extended freeze-drying reduces colitis in mice. Gastroenterology 141 (2): 642–652. https://doi.org/10.1053/j.gastro.2011.05.002.

    Article  CAS  PubMed  Google Scholar 

  37. Zen, M., et al. 2013. Clinical guidelines and definitions of autoinflammatory diseases: Contrasts and comparisons with autoimmunity-a comprehensive review. Clinical Reviews in Allergy and Immunology 45 (2): 227–235. https://doi.org/10.1007/s12016-013-8355-1.

    Article  CAS  PubMed  Google Scholar 

  38. Ovchinnikova, O.A., et al. 2014. Mycobacterium bovis BCG killed by extended freeze-drying induces an immunoregulatory profile and protects against atherosclerosis. Journal of Internal Medicine 275 (1): 49–58. https://doi.org/10.1111/joim.12127.

    Article  CAS  PubMed  Google Scholar 

  39. Jeljeli, M., et al. 2020. Macrophage Immune Memory Controls Endometriosis in Mice and Humans. Cell Reports 33 (5): 108325. https://doi.org/10.1016/j.celrep.2020.108325.

    Article  CAS  PubMed  Google Scholar 

  40. Xu, Y., et al. 2019. SPIONs enhances IL-10-producing macrophages to relieve sepsis via Cav1-Notch1/HES1-mediated autophagy. International Journal of Nanomedicine 14: 6779–6797. https://doi.org/10.2147/IJN.S215055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Vught, L.A., et al. 2016. Incidence, Risk Factors, and Attributable Mortality of Secondary Infections in the Intensive Care Unit After Admission for Sepsis. JAMA 315 (14): 1469–1479. https://doi.org/10.1001/jama.2016.2691.

    Article  CAS  PubMed  Google Scholar 

  42. Arens, C., et al. 2016. Sepsis-induced long-term immune paralysis–results of a descriptive, explorative study. Critical Care 20: 93. https://doi.org/10.1186/s13054-016-1233-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Torres, L.K., P. Pickkers, and T. van der Poll. 2022. Sepsis-Induced Immunosuppression. Annual Review of Physiology 84: 157–181. https://doi.org/10.1146/annurev-physiol-061121-040214.

    Article  CAS  PubMed  Google Scholar 

  44. Xu, Z., et al. 2022. Card9 protects fungal peritonitis through regulating Malt1-mediated activation of autophagy in macrophage. International Immunopharmacology 110: 108941. https://doi.org/10.1016/j.intimp.2022.108941.

    Article  CAS  PubMed  Google Scholar 

  45. Schille, S., et al. 2018. LC3-associated phagocytosis in microbial pathogenesis. International Journal of Medical Microbiology 308 (1): 228–236. https://doi.org/10.1016/j.ijmm.2017.10.014.

    Article  CAS  PubMed  Google Scholar 

  46. Mehta, P., et al. 2014. Noncanonical autophagy: One small step for LC3, one giant leap for immunity. Current Opinion in Immunology 26: 69–75. https://doi.org/10.1016/j.coi.2013.10.012.

    Article  CAS  PubMed  Google Scholar 

  47. Martinez, J., et al. 2011. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proceedings of the National Academy of Sciences of the United States of America 108 (42): 17396–17401. https://doi.org/10.1073/pnas.1113421108.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sun, Q., et al. 2011. The RUN domain of rubicon is important for hVps34 binding, lipid kinase inhibition, and autophagy suppression. Journal of Biological Chemistry 286 (1): 185–191. https://doi.org/10.1074/jbc.M110.126425.

    Article  CAS  PubMed  Google Scholar 

  49. Muniz-Feliciano, L., et al. 2017. RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye. Autophagy 13 (12): 2072–2085. https://doi.org/10.1080/15548627.2017.1380124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, J.H., et al. 2018. NLRX1 Facilitates Histoplasma capsulatum-Induced LC3-Associated Phagocytosis for Cytokine Production in Macrophages. Frontiers in Immunology 9: 2761. https://doi.org/10.3389/fimmu.2018.02761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, X., et al. 2021. Ferumoxytol-beta-glucan Inhibits Melanoma Growth via Interacting with Dectin-1 to Polarize Macrophages into M1 Phenotype. International Journal of Medical Sciences 18 (14): 3125–3139. https://doi.org/10.7150/ijms.61525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Quintin, J., et al. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host & Microbe 12 (2): 223–232. https://doi.org/10.1016/j.chom.2012.06.006.

    Article  CAS  Google Scholar 

  53. Mata-Martinez, P., M. Bergon-Gutierrez, and C. Del Fresno. 2022. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Frontiers in Immunology 13: 812148. https://doi.org/10.3389/fimmu.2022.812148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2023YFC2308200) and National Natural Science Foundation of China Special Project [T2341015].

Author information

Authors and Affiliations

Authors

Contributions

LY and YH conceived this idea. LY and ZB performed the experiments in vitro. JZ, YP, YD, JW and RL performed the experiments in vivo. YL participated in the collection, analysis, and interpretation of the data. YL wrote the manuscript. YZ and HD revised it critically for important intellectual content. YH approved the version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yue Zhao, Huan Dou or Yayi Hou.

Ethics declarations

Ethics Statement

The animal study was reviewed and approved by the Animal Protection and Ethics Committee of Nanjing University (IACUC-D2202077).

Consent for Publication

The manuscript has been approved by all authors for publication.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Bing, Z., Zheng, Y. et al. Oroxylin A-induced Trained Immunity Promotes LC3-associated Phagocytosis in Macrophage in Protecting Mice Against Sepsis. Inflammation (2024). https://doi.org/10.1007/s10753-024-02033-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02033-2

KEY WORDS

Navigation