Skip to main content

Advertisement

Log in

Resatorvid (TAK-242) Ameliorates Ulcerative Colitis by Modulating Macrophage Polarization and T Helper Cell Balance via TLR4/JAK2/STAT3 Signaling Pathway

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Resatorvid (TAK-242), a specific inhibitor of Toll-like receptor-4 (TLR4), has attracted attention for its anti-inflammatory properties. Despite this, few studies have evaluated its effects on ulcerative colitis (UC). This study aimed to investigate the effects of TAK-242 on macrophage polarization and T helper cell balance and the mechanism by which it alleviates UC. Our findings indicated that TLR4 expression was elevated in patients with UC, a mouse model of UC, and HT29 cells undergoing an inflammatory response. TAK‑242 treatment reduced apoptosis in TNF-α and LPS-stimulated HT29 cells and alleviated symptoms of dextran sulfate sodium (DSS)‑induced colitis in vivo. TAK‑242 downregulated TLR4 expression and decreased the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β while enhancing IL-10 production. TAK-242 also reduced M1 macrophage polarization and diminished Th1 and Th17 cell infiltration while increasing Th2 cell infiltration and M2 macrophage polarization both in vitro and in vivo. Mechanistically, TAK-242 inhibited the JAK2/STAT3 signaling pathway, an important regulator of macrophage polarization and T helper cell balance. Furthermore, the in vivo and in vitro effects of TAK-242 were partially negated by the administration of the JAK2/STAT3 antagonist AG490, suggesting that TAK-242 inhibits the JAK2/STAT3 pathway to exert its biological activities. Taken together, this study underscores TAK-242 as a promising anti-UC agent, functioning by modulating macrophage polarization and T helper cell balance via the TLR4/JAK2/STAT3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

No datasets were generated or analysed during the current study.

References

  1. Gajendran, M., P. Loganathan, G. Jimenez, A.P. Catinella, N. Ng, C. Umapathy, N. Ziade, and J.G. Hashash. 2019. A comprehensive review and update on ulcerative colitis(). Disease-a-month 65 (12): 100851.

    Article  PubMed  Google Scholar 

  2. Du, L., and C. Ha. 2020. Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America 49 (4): 643–654.

    Article  PubMed  Google Scholar 

  3. Kucharzik, T., S. Koletzko, K. Kannengiesser, and A. Dignass. 2020. Ulcerative Colitis-Diagnostic and Therapeutic Algorithms. Deutsches Ärzteblatt International 117 (33–34): 564–574.

    PubMed  PubMed Central  Google Scholar 

  4. Porter R.J., R. Kalla, and G.T. Ho. Ulcerative colitis: Recent advances in the understanding of disease pathogenesis. F1000Research vol. 9 F1000 Faculty Rev-294. 24 Apr. 2020. https://doi.org/10.12688/f1000research.20805.1

  5. Shi, F., X. Guo, X. Jiang, P. Zhou, Y. Xiao, T. Zhou, G. Chen, Z. Zhao, H. Xiao, C. Hou, et al. 2012. Dysregulated Tim-3 expression and its correlation with imbalanced CD4 helper T cell function in ulcerative colitis. Clinical Immunology (Orlando, Fla) 145 (3): 230–240.

    Article  CAS  PubMed  Google Scholar 

  6. Geremia, A., P. Biancheri, P. Allan, G.R. Corazza, and A. Di Sabatino. 2014. Innate and adaptive immunity in inflammatory bowel disease. Autoimmunity Reviews 13 (1): 3–10.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, J., Q. Lu, Y. Liu, Z. Shi, L. Hu, Z. Zeng, Y. Tu, Z. Xiao, and Q. Xu. 2021. Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies. Journal of Immunology Research 2021: 8816041.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Harbour, S.N., C.L. Maynard, C.L. Zindl, T.R. Schoeb, and C.T. Weaver. 2015. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proceedings of the National Academy of Sciences of the United States of America 112 (22): 7061–7066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heller, F., P. Florian, C. Bojarski, J. Richter, M. Christ, B. Hillenbrand, J. Mankertz, A.H. Gitter, N. Bürgel, M. Fromm, et al. 2005. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129 (2): 550–564.

    Article  CAS  PubMed  Google Scholar 

  10. Zeng, J., M. Li, Q. Zhao, M. Chen, L. Zhao, S. Wei, H. Yang, Y. Zhao, A. Wang, J. Shen, et al. 2023. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases. Journal of Pharmaceutical Analysis 13 (6): 545–562.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zou, H., R. Li, H. Hu, Y. Hu, and X. Chen. 2018. Modulation of regulatory T cell activity by TNF receptor type II-targeting pharmacological agents. Frontiers in immunology 9: 594. https://doi.org/10.3389/fimmu.2018.00594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xia, P., Y. Wu, S. Lian, L. Yan, X. Meng, Q. Duan, and G. Zhu. 2021. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Applied Microbiology and Biotechnology 105 (13): 5341–5355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brubaker, S.W., K.S. Bonham, I. Zanoni, and J.C. Kagan. 2015. Innate Immune Pattern Recognition: A Cell Biological Perspective. Annual Review of Immunology 33 (1): 257–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, B.S., and J.O. Lee. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental & Molecular Medicine 45: e66.

    Article  Google Scholar 

  15. Liu, Y., H. Yin, M. Zhao, and Q. Lu. 2014. TLR2 and TLR4 in autoimmune diseases: A comprehensive review. Clinical Reviews in Allergy and Immunology 47 (2): 136–147.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, L.H., J.Y. Liu, and J.B. Yin. 2021. Eriodictyol attenuates TNBS-induced ulcerative colitis through repressing TLR4/NF-kB signaling pathway in rats. Kaohsiung Journal of Medical Sciences 37 (9): 812–818.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, B., X. Piao, W. Niu, Q. Zhang, C. Ma, T. Wu, Q. Gu, T. Cui, and S. Li. 2020. Kuijieyuan Decoction Improved Intestinal Barrier Injury of Ulcerative Colitis by Affecting TLR4-Dependent PI3K/AKT/NF-kappaB Oxidative and Inflammatory Signaling and Gut Microbiota. Frontiers in Pharmacology 11: 1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tam, J.S.Y., J.K. Coller, P.A. Hughes, C.A. Prestidge, and J.M. Bowen. 2021. Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian Journal of Gastroenterology 40 (1): 5–21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dong, J., Y. Liao, and B. Wu. 2022. TAK-242 ameliorates epileptic symptoms in mice by inhibiting the TLR4/NF-kappaB signaling pathway. Annals of Translational Medicine 10 (14): 795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Plunk, M.A., A. Alaniz, O.P. Olademehin, T.L. Ellington, K.L. Shuford, and R.R. Kane. 2020. Design and Catalyzed Activation of Tak-242 Prodrugs for Localized Inhibition of TLR4-Induced Inflammation. ACS Medicinal Chemistry Letters 11 (2): 141–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Samarpita, S., J.Y. Kim, M.K. Rasool, and K.S. Kim. 2020. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. Arthritis Research & Therapy 22 (1): 16.

    Article  CAS  Google Scholar 

  22. Xing, Z., T. Zhen, F. Jie, Y. Jie, L. Shiqi, Z. Kaiyi, O. Zhicui, and H. Mingyan. 2022. Early Toll-like receptor 4 inhibition improves immune dysfunction in the hippocampus after hypoxic-ischemic brain damage. International Journal of Medical Sciences 19 (1): 142–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bamidele, A.O., P.A. Svingen, M.R. Sagstetter, O.F. Sarmento, M. Gonzalez, M.B. Braga Neto, S. Kugathasan, G. Lomberk, R.A. Urrutia, and W.A. Faubion Jr. 2019. Disruption of FOXP3-EZH2 Interaction Represents a Pathobiological Mechanism in Intestinal Inflammation. Cellular and Molecular Gastroenterology and Hepatology 7 (1): 55–71.

    Article  PubMed  Google Scholar 

  24. Simões, F.C., T.J. Cahill, A. Kenyon, D. Gavriouchkina, J.M. Vieira, X. Sun, D. Pezzolla, C. Ravaud, E. Masmanian, M. Weinberger, et al. 2020. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications 11 (1): 600.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang, X., J. Wang, J. Zhao, H. Wang, J. Chen, and J. Wu. 2022. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics 12 (2): 963–975.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li, Y.Y., X.J. Wang, Y.L. Su, Q. Wang, S.W. Huang, Z.F. Pan, Y.P. Chen, J.J. Liang, M.L. Zhang, X.Q. Xie, et al. 2022. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacologica Sinica 43 (6): 1495–1507.

    Article  CAS  PubMed  Google Scholar 

  27. Jia, D.J., Q.W. Wang, Y.Y. Hu, J.M. He, Q.W. Ge, Y.D. Qi, L.Y. Chen, Y. Zhang, L.N. Fan, Y.F. Lin, et al. 2022. Lactobacillus johnsonii alleviates colitis by TLR1/2-STAT3 mediated CD206(+) macrophages(IL-10) activation. Gut Microbes 14 (1): 2145843.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alex, P., N.C. Zachos, T. Nguyen, L. Gonzales, T.E. Chen, L.S. Conklin, M. Centola, and X. Li. 2009. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflammatory Bowel Diseases 15 (3): 341–352.

    Article  PubMed  Google Scholar 

  29. Wang, J., G. Zhu, C. Sun, K. Xiong, T. Yao, Y. Su, and H. Fang. 2020. TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signaling pathway. Microbial Cell Factories 19 (1): 158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, M., S.Y. Shim, and S.H. Sung. 2017. Triterpenoids Isolated from Alnus japonica Inhibited LPS-Induced Inflammatory Mediators in HT-29 Cells and RAW264.7 Cells. Biological & Pharmaceutical Bulletin 40 (9): 1544–1550.

    Article  CAS  Google Scholar 

  31. Kim, C., D. Le, and M. Lee. 2021. Diterpenoids isolated from Podocarpus macrophyllus inhibited the inflammatory mediators in LPS-induced HT-29 and RAW 2647 cells. Molecules (Basel, Switzerland) 26 (14): 4326. https://doi.org/10.3390/molecules26144326.

    Article  CAS  PubMed  Google Scholar 

  32. Monteleone, G., F. Pallone, and T.T. MacDonald. 2011. Emerging immunological targets in inflammatory bowel disease. Current Opinion in Pharmacology 11 (6): 640–645.

    Article  CAS  PubMed  Google Scholar 

  33. Coskun, M., M. Salem, J. Pedersen, and O.H. Nielsen. 2013. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological research 76: 1–8.

    Article  CAS  PubMed  Google Scholar 

  34. Salas, A., C. Hernandez-Rocha, M. Duijvestein, W. Faubion, D. McGovern, S. Vermeire, S. Vetrano, and N. Vande Casteele. 2020. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology 17 (6): 323–337.

    Article  Google Scholar 

  35. Szumilas, D., R. Krysiak, and B. Okopien. 2013. The role of TLR4 receptor in development of inflammation and carcinogenesis in ulcerative colitis and pharmacotherapy of this disorder. Wiadomosci Lekarskie 66 (1): 3–9.

    PubMed  Google Scholar 

  36. Yao, D., M. Dong, C. Dai, and S. Wu. 2019. Inflammation and Inflammatory Cytokine Contribute to the Initiation and Development of Ulcerative Colitis and Its Associated Cancer. Inflammatory Bowel Diseases 25 (10): 1595–1602.

    Article  PubMed  Google Scholar 

  37. Guo, X.Y., X.J. Liu, and J.Y. Hao. 2020. Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment. Journal of Digestive Diseases 21 (3): 147–159.

    Article  PubMed  Google Scholar 

  38. Ortega-Cava, C.F., S. Ishihara, M.A. Rumi, K. Kawashima, N. Ishimura, H. Kazumori, J. Udagawa, Y. Kadowaki, and Y. Kinoshita. 2003. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. Journal of Immunology  (Baltimore, Md : 1950) 170 (8): 3977–3985.

    CAS  PubMed  Google Scholar 

  39. Liu, Y., Z. Zhang, L. Wang, J. Li, L. Dong, W. Yue, J. Chen, X. Sun, L. Zhong, and D. Sun. 2010. TLR4 monoclonal antibody blockade suppresses dextran-sulfate-sodium-induced colitis in mice. Journal of Gastroenterology and Hepatology 25 (1): 209–214.

    Article  CAS  PubMed  Google Scholar 

  40. Facchini, F.A., D. Di Fusco, S. Barresi, A. Luraghi, A. Minotti, F. Granucci, G. Monteleone, F. Peri, and I. Monteleone. 2020. Effect of chemical modulation of toll-like receptor 4 in an animal model of ulcerative colitis. European Journal of Clinical Pharmacology 76 (3): 409–418.

    Article  CAS  PubMed  Google Scholar 

  41. Xiong, T., X. Zheng, K. Zhang, H. Wu, Y. Dong, F. Zhou, B. Cheng, L. Li, W. Xu, J. Su, et al. 2022. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-kappaB pathway. Journal of Ethnopharmacology 289: 115001.

    Article  CAS  PubMed  Google Scholar 

  42. Li, Y., X. Pan, M. Yin, C. Li, and L. Han. 2021. Preventive Effect of Lycopene in Dextran Sulfate Sodium-Induced Ulcerative Colitis Mice through the Regulation of TLR4/TRIF/NF-kappaB Signaling Pathway and Tight Junctions. Journal of Agriculture and Food Chemistry 69 (45): 13500–13509.

    Article  CAS  Google Scholar 

  43. Matsunaga, N., N. Tsuchimori, T. Matsumoto, and M. Ii. 2011. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Molecular Pharmacology 79 (1): 34–41.

    Article  CAS  PubMed  Google Scholar 

  44. Wei, Z., X. Sun, Q. Xu, Y. Zhang, F. Tian, H. Sun, H. Zheng, and J. Dai. 2016. TAK-242 suppresses lipopolysaccharide-induced inflammation in human coronary artery endothelial cells. Die Pharmazie 71 (10): 583–587.

    CAS  PubMed  Google Scholar 

  45. Karami, J., E. Farhadi, A.A. Delbandi, M. Shekarabi, M.N. Tahmasebi, A. Sharafat Vaziri, M. Akhtari, M.J. Mousavi, A. Jamshidi, and M. Mahmoudi. 2021. Evaluation of TAK-242 (Resatorvid) Effects on Inflammatory Status of Fibroblast-like Synoviocytes in Rheumatoid Arthritis and Trauma Patients. Iranian Journal of Allergy, Asthma, and Immunology 20 (4): 453–464.

    PubMed  Google Scholar 

  46. Zhang, J., Y. Zhao, T. Hou, H. Zeng, D. Kalambhe, B. Wang, X. Shen, and Y. Huang. 2020. Macrophage-based nanotherapeutic strategies in ulcerative colitis. Journal of Controlled Release 320: 363–380.

    Article  CAS  PubMed  Google Scholar 

  47. He, R., Y. Li, C. Han, R. Lin, W. Qian, and X. Hou. 2019. L-Fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation. International Immunopharmacology 73: 379–388.

    Article  CAS  PubMed  Google Scholar 

  48. Zhuang, H., Q. Lv, C. Zhong, Y. Cui, L. He, C. Zhang, and J. Yu. 2021. Tiliroside Ameliorates Ulcerative Colitis by Restoring the M1/M2 Macrophage Balance via the HIF-1alpha/glycolysis Pathway. Frontiers in Immunology 12: 649463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, Y., F. Diao, Y. Niu, X. Li, H. Zhou, Q. Mei, and Y. Li. 2020. Apple polysaccharide prevents from colitis-associated carcinogenesis through regulating macrophage polarization. International Journal of Biological Macromolecules 161: 704–711.

    Article  CAS  PubMed  Google Scholar 

  50. Gamah, M., M. Alahdal, Y. Zhang, Y. Zhou, Q. Ji, Z. Yuan, Y. Han, X. Shen, Y. Ren, and W. Zhang. 2021. High-altitude hypoxia exacerbates dextran sulfate sodium (DSS)-induced colitis by upregulating Th1 and Th17 lymphocytes. Bioengineered 12 (1): 7985–7994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cordes, F., D. Foell, J.N. Ding, G. Varga, and D. Bettenworth. 2020. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World Journal of Gastroenterology 26 (28): 4055–4075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yao, D., Z. Zhou, P. Wang, L. Zheng, Y. Huang, Y. Duan, B. Liu, and Y. Li. 2021. MiR-125-5p/IL-6R axis regulates macrophage inflammatory response and intestinal epithelial cell apoptosis in ulcerative colitis through JAK1/STAT3 and NF-kappaB pathway. Cell Cycle 20 (23): 2547–2564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao, Y., H. Luan, H. Jiang, Y. Xu, X. Wu, Y. Zhang, and R. Li. 2021. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine 84: 153519.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No: 2022D01C632).

Author information

Authors and Affiliations

Authors

Contributions

XH, RL, and FG conceived and designed the experiments. XH, RL, HL, MD, JG, WH, WL and MH contributed significantly to the experiments and arranging data. RZ and TY performed data analyses. XH wrote the draft manuscript. FG revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Feng Gao.

Ethics declarations

Ethics Statement

All patients provided their written, voluntarily informed consent. All human and animal-related procedures were carried out in accordance with the guidelines outlined in the Helsinki Declaration, and this study was approved by the Ethics Committee of the Xinjiang Yugur Autonomous Region People’s Hospital.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Lin, R., Liu, H. et al. Resatorvid (TAK-242) Ameliorates Ulcerative Colitis by Modulating Macrophage Polarization and T Helper Cell Balance via TLR4/JAK2/STAT3 Signaling Pathway. Inflammation (2024). https://doi.org/10.1007/s10753-024-02028-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02028-z

KEY WORDS

Navigation