Skip to main content
Log in

CARMA3 Drives NF-κB Activation and Promotes Intervertebral Disc Degeneration: Involvement of CARMA3-BCL10-MALT1 Signalosome

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Intervertebral disc degeneration (IDD) diseases are common and frequent diseases in orthopedics. The caspase recruitment domain (CARD) and membrane-associated guanylate kinase-like protein 3 (CARMA3) is crucial in the activation of the NF-κB pathway. However, the biological function of CARMA3 in IDD remains unknown. Here, CARMA3 expression was elevated in nucleus pulposus (NP) tissues of IDD rats and nutrient deprivation (ND)-induced NP cells. The main pathological manifestations observed in IDD rats were shrinkage of the NP, reduction of NP cells, fibrosis of NP tissues, and massive reduction of proteoglycans. These changes were accompanied by a decrease in the expression of collagen II and aggrecan, an increase in the expression of the extracellular matrix (ECM) catabolic proteases MMP-3, MMP-13, and metalloprotease with ADAMTS-5, and an increase in the activity of the pro-apoptotic protease caspase-3. The expression of p-IκBαSer32/36 and p-p65Ser536 was also upregulated. However, these effects were reversed with the knockdown of CARMA3. Mechanistically, CARMA3 bound to BCL10 and MALT1 to form a signalosome. Knockdown of CARMA3 reduced the CARMA3-BCL10-MALT1 signalosome-mediated NF-κB activation. CARMA3 activated the NF-κB signaling pathway in a manner that bound to BCL10 and MALT1 to form a signalosome, which affects NP cell damage and is involved in the development of IDD. This supports CARMA3-BCL10-MALT1-NF-κB as a promising targeting axis for the treatment of IDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data in this study are available from the corresponding author upon reasonable request.

References

  1. Teraguchi, M., N. Yoshimura, H. Hashizume, S. Muraki, H. Yamada, A. Minamide, H. Oka, Y. Ishimoto, K. Nagata, R. Kagotani, N. Takiguchi, T. Akune, H. Kawaguchi, K. Nakamura, and M. Yoshida. 2014. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama Spine Study. Osteoarthritis and Cartilage 22 (1): 104–110. https://doi.org/10.1016/j.joca.2013.10.019.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Y., F. He, Z. Chen, Q. Su, M. Yan, Q. Zhang, J. Tan, L. Qian, and Y. Han. 2019. Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging 11 (22): 10499–10512. https://doi.org/10.18632/aging.102472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chan, D., Y. Song, P. Sham, and K.M.C. Cheung. 2006. Genetics of disc degeneration. European Spine Journal : Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 15 (Suppl 3): S317–S325.

    Article  PubMed  Google Scholar 

  4. Kamali, A., R. Ziadlou, G. Lang, J. Pfannkuche, S. Cui, Z. Li, R.G. Richards, M. Alini, and S. Grad. 2021. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics 11 (1): 27–47. https://doi.org/10.7150/thno.48987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raj, P.P. 2008. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Practice: the Official Journal of World Institute of Pain 8 (1): 18–44. https://doi.org/10.1111/j.1533-2500.2007.00171.x

    Article  PubMed  Google Scholar 

  6. Vergroesen, P.P.A., I. Kingma, K.S. Emanuel, R.J.W. Hoogendoorn, T.J. Welting, B.J. van Royen, J.H. van Dieën, and T.H. Smit. 2015. Mechanics and biology in intervertebral disc degeneration: A vicious circle. Osteoarthritis and Cartilage 23 (7): 1057–1070. https://doi.org/10.1016/j.joca.2015.03.028.

    Article  PubMed  Google Scholar 

  7. Shaw, A.S., and E.L. Filbert. 2009. Scaffold proteins and immune-cell signalling. Nature Reviews. Immunology 9 (1): 47–56. https://doi.org/10.1038/nri2473.

    Article  CAS  PubMed  Google Scholar 

  8. Blonska, M., and X. Lin. 2011. NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Research 21 (1): 55–70. https://doi.org/10.1038/cr.2010.182.

    Article  CAS  PubMed  Google Scholar 

  9. McAuley, J.R., T.J. Freeman, P. Ekambaram, P.C. Lucas, and L.M. McAllister-Lucas. 2018. CARMA3 is a critical mediator of G protein-coupled receptor and receptor tyrosine kinase-driven solid tumor pathogenesis. Frontiers In Immunology 9: 1887. https://doi.org/10.3389/fimmu.2018.01887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, H., Z. Li, Y. Huo, T. Tian, D. Yang, L. Ma, S. Yang, and W. Ding. 2021. 17β-Estradiol alleviates intervertebral disc degeneration by inhibiting NF-κB signal pathway. Life Sciences 284.

    Article  CAS  PubMed  Google Scholar 

  11. Li, Z., X. Wang, H. Pan, H. Yang, X. Li, K. Zhang, H. Wang, Z. Zheng, H. Liu, and J. Wang. 2017. Resistin promotes CCL4 expression through toll-like receptor-4 and activation of the p38-MAPK and NF-κB signaling pathways: implications for intervertebral disc degeneration. Osteoarthritis and Cartilage 25 (2): 341–350. https://doi.org/10.1016/j.joca.2016.10.002.

    Article  CAS  PubMed  Google Scholar 

  12. Grabiner, B.C., M. Blonska, P.-C. Lin, Y. You, D. Wang, J. Sun, B.G. Darnay, C. Dong, and X. Lin. 2007. CARMA3 deficiency abrogates G protein-coupled receptor-induced NF-{kappa}B activation. Genes & Development 21 (8): 984–996.

    Article  CAS  Google Scholar 

  13. Cowan, C., C.K. Muraleedharan, J.J. O’Donnell, P.K. Singh, H. Lum, A. Kumar, and S. Xu. 2014. MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells. Investigative Ophthalmology & Visual Science 55 (8): 4944–4951. https://doi.org/10.1167/iovs.13-13631.

    Article  CAS  Google Scholar 

  14. McAllister-Lucas, L.M., X. Jin, S. Gu, K. Siu, S. McDonnell, J. Ruland, P.C. Delekta, M. Van Beek, and P.C. Lucas. 2010. The CARMA3-Bcl10-MALT1 signalosome promotes angiotensin II-dependent vascular inflammation and atherogenesis. The Journal of Biological Chemistry 285 (34): 25880–25884. https://doi.org/10.1074/jbc.C110.109421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, S., L. Lei, Z. Li, F. Chen, Y. Huang, G. Jiang, X. Guo, Z. Zhao, H. Liu, H. Wang, C. Liu, Z. Zheng, and J. Wang. 2022. Grem1 accelerates nucleus pulposus cell apoptosis and intervertebral disc degeneration by inhibiting TGF-β-mediated Smad2/3 phosphorylation. Experimental & Molecular Medicine 54 (4): 518–530. https://doi.org/10.1038/s12276-022-00753-9.

    Article  CAS  Google Scholar 

  16. Luo, R., G. Li, W. Zhang, H. Liang, S. Lu, J.P.Y. Cheung, T. Zhang, J. Tu, H. Liu, Z. Liao, W. Ke, B. Wang, Y. Song, and C. Yang. 2022. O-GlcNAc transferase regulates intervertebral disc degeneration by targeting FAM134B-mediated ER-phagy. Experimental & Molecular Medicine 54 (9): 1472–1485. https://doi.org/10.1038/s12276-022-00844-7.

    Article  CAS  Google Scholar 

  17. Li, Z., H. Yang, Y. Hai, and Y. Cheng. 2023. Regulatory effect of inflammatory mediators in intervertebral disc degeneration. Mediators of Inflammation 2023: 6210885. https://doi.org/10.1155/2023/6210885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, G.-Z., M.-Q. Liu, H.-W. Chen, Z.-L. Wu, Y.-C. Gao, Z.-J. Ma, X.-G. He, and X.-W. Kang. 2021. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration. Cell Proliferation 54 (7): e13057. https://doi.org/10.1111/cpr.13057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Israël, L., M. Bardet, A. Huppertz, N. Mercado, S. Ginster, A. Unterreiner, A. Schlierf, J.F. Goetschy, H.-G. Zerwes, L. Roth, F. Kolbinger, and F. Bornancin. 2018. A CARMA3-dependent tonic signalosome activates MALT1 paracaspase and regulates IL-17/TNF-α-driven keratinocyte inflammation. The Journal of Investigative Dermatology 138 (9): 2075–2079. https://doi.org/10.1016/j.jid.2018.03.1503.

    Article  CAS  PubMed  Google Scholar 

  20. Ni, W., C. Jiang, Y. Wu, H. Zhang, L. Wang, J.H.N. Yik, D.R. Haudenschild, S. Fan, S. Shen, and Z. Hu. 2021. CircSLC7A2 protects against osteoarthritis through inhibition of the miR-4498/TIMP3 axis. Cell Proliferation 54 (6): e13047. https://doi.org/10.1016/j.jid.2018.03.1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parreira, P., C.G. Maher, D. Steffens, M.J. Hancock, and M.L. Ferreira. 2018. Risk factors for low back pain and sciatica: An umbrella review. The Spine Journal : Official Journal of the North American Spine Society 18 (9): 1715–1721. https://doi.org/10.1016/j.spinee.2018.05.018.

    Article  PubMed  Google Scholar 

  22. Roughley, P.J., L.I. Melching, T.F. Heathfield, R.H. Pearce, and J.S. Mort. 2006. The structure and degradation of aggrecan in human intervertebral disc. European Spine Journal : Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 15 (Suppl 3): S326–S332.

    Article  PubMed  Google Scholar 

  23. Liang, H., R. Luo, G. Li, W. Zhang, Y. Song, and C. Yang. 2022. The proteolysis of ECM in intervertebral disc degeneration. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23031715.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, W.-J., X.-H. Yu, C. Wang, W. Yang, W.-S. He, S.-J. Zhang, Y.-G. Yan, and J. Zhang. 2015. MMPs and ADAMTSs in intervertebral disc degeneration. Clinica Chimica Acta: International Journal of Clinical Chemistry 448: 238–246. https://doi.org/10.1016/j.cca.2015.06.023.

    Article  CAS  PubMed  Google Scholar 

  25. Vo, N.V., R.A. Hartman, T. Yurube, L.J. Jacobs, G.A. Sowa, and J.D. Kang. 2013. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. The Spine Journal : Official Journal of the North American Spine Society 13 (3): 331–341. https://doi.org/10.1016/j.spinee.2012.02.027.

    Article  PubMed  Google Scholar 

  26. Miyazaki, S., K. Kakutani, T. Yurube, K. Maeno, T. Takada, Z. Zhang, T. Kurakawa, Y. Terashima, M. Ito, T. Ueha, T. Matsushita, R. Kuroda, M. Kurosaka, and K. Nishida. 2015. Recombinant human SIRT1 protects against nutrient deprivation-induced mitochondrial apoptosis through autophagy induction in human intervertebral disc nucleus pulposus cells. Arthritis Research & Therapy 17 (1): 253. https://doi.org/10.1186/s13075-015-0763-6.

    Article  CAS  Google Scholar 

  27. Ao, P., W. Huang, J. Li, T. Wu, L. Xu, Z. Deng, W. Chen, C. Yin, and X. Cheng. 2018. 17β-estradiol protects nucleus pulposus cells from serum deprivation-induced apoptosis and regulates expression of MMP-3 and MMP-13 through promotion of autophagy. Biochemical and Biophysical Research Communications 503 (2): 791–797. https://doi.org/10.1016/j.bbrc.2018.06.077.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, J., H. Pan, X. Li, K. Zhang, Z. Li, H. Wang, Z. Zheng, and H. Liu. 2017. Hypoxia suppresses serum deprivation-induced degradation of the nucleus pulposus cell extracellular matrix through the JNK and NF-κB pathways. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society 35 (9): 2059–2066. https://doi.org/10.1002/jor.23486.

    Article  CAS  PubMed  Google Scholar 

  29. Johnson, W.E.B., S. Stephan, and S. Roberts. 2008. The influence of serum, glucose and oxygen on intervertebral disc cell growth in vitro: Implications for degenerative disc disease. Arthritis Research & Therapy 10 (2): R46. https://doi.org/10.1186/ar2405.

    Article  CAS  Google Scholar 

  30. Yang, S.-D., Z.-L. Bai, F. Zhang, L. Ma, D.-L. Yang, and W.-Y. Ding. 2014. Levofloxacin increases the effect of serum deprivation on anoikis of rat nucleus pulposus cells via Bax/Bcl-2/caspase-3 pathway. Toxicology Mechanisms and Methods 24 (9): 688–696. https://doi.org/10.3109/15376516.2014.963772.

    Article  CAS  PubMed  Google Scholar 

  31. Fujita, N., J.-I. Imai, T. Suzuki, M. Yamada, K. Ninomiya, K. Miyamoto, R. Iwasaki, H. Morioka, M. Matsumoto, K. Chiba, S. Watanabe, T. Suda, Y. Toyama, and T. Miyamoto. 2008. Vascular endothelial growth factor-A is a survival factor for nucleus pulposus cells in the intervertebral disc. Biochemical and Biophysical Research Communications 372 (2): 367–372. https://doi.org/10.1016/j.bbrc.2008.05.044.

    Article  CAS  PubMed  Google Scholar 

  32. Zelzer, E., R. Mamluk, N. Ferrara, R.S. Johnson, E. Schipani, and B.R. Olsen. 2004. VEGFA is necessary for chondrocyte survival during bone development. Development (Cambridge, England) 131 (9): 2161–2171.

    Article  CAS  PubMed  Google Scholar 

  33. Choi, H., S. Tessier, E.S. Silagi, R. Kyada, F. Yousefi, N. Pleshko, I.M. Shapiro, and M.V. Risbud. 2018. A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis. Matrix Biology : Journal of the International Society For Matrix Biology 70: 102–122. https://doi.org/10.1016/j.matbio.2018.03.019.

    Article  CAS  PubMed  Google Scholar 

  34. Nicolas, S., S. Abdellatef, M.A. Haddad, I. Fakhoury, and M. El-Sibai. 2019. Hypoxia and EGF stimulation regulate VEGF expression in human glioblastoma multiforme (GBM) cells by differential regulation of the PI3K/Rho-GTPase and MAPK pathways. Cells. https://doi.org/10.3390/cells8111397.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shim, E.-K., J.-S. Lee, D.-E. Kim, S.K. Kim, B.-J. Jung, E.-Y. Choi, and C.-S. Kim. 2016. Autogenous mesenchymal stem cells from the vertebral body enhance intervertebral disc regeneration via paracrine interaction: An in vitro pilot study. Cell Transplantation 25 (10): 1819–1832. https://doi.org/10.3727/096368916X691420.

    Article  PubMed  Google Scholar 

  36. Wu, J., Y. Chen, Z. Liao, H. Liu, S. Zhang, D. Zhong, X. Qiu, T. Chen, D. Su, X. Ke, Y. Wan, T. Zhou, and P. Su. 2022. Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration. Molecular Therapy : the Journal of the American Society of Gene Therapy 30 (10): 3241–3256. https://doi.org/10.1016/j.ymthe.2022.05.021.

    Article  CAS  PubMed  Google Scholar 

  37. Shao, Z., B. Wang, Y. Shi, C. Xie, C. Huang, B. Chen, H. Zhang, G. Zeng, H. Liang, Y. Wu, Y. Zhou, N. Tian, A. Wu, W. Gao, X. Wang, and X. Zhang. 2021. Senolytic agent quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis. Osteoarthritis and Cartilage 29 (3): 413–422. https://doi.org/10.1016/j.joca.2020.11.006.

    Article  CAS  PubMed  Google Scholar 

  38. Yin, H., Y. Zhang, K. Wang, Y. Song, J. Tu, L. Kang, K. Zhao, X. Wu, R. Luo, and C. Yang. 2018. The involvement of regulated in development and DNA damage response 1 (REDD1) in the pathogenesis of intervertebral disc degeneration. Experimental Cell Research 372 (2): 188–197. https://doi.org/10.1016/j.yexcr.2018.10.001.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, J., J. Hu, X. Chen, C. Huang, J. Lin, Z. Shao, M. Gu, Y. Wu, N. Tian, W. Gao, Y. Zhou, X. Wang, and X. Zhang. 2019. BRD4 inhibition regulates MAPK, NF-κB signals, and autophagy to suppress MMP-13 expression in diabetic intervertebral disc degeneration. FASEB Journal : Official Publication of the Federation of American Societies For Experimental Biology 33 (10): 11555–11566. https://doi.org/10.1096/fj.201900703R.

    Article  CAS  PubMed  Google Scholar 

  40. Liao, Z., X. Wu, Y. Song, R. Luo, H. Yin, S. Zhan, S. Li, K. Wang, Y. Zhang, and C. Yang. 2019. Angiopoietin-like protein 8 expression and association with extracellular matrix metabolism and inflammation during intervertebral disc degeneration. Journal of Cellular and Molecular Medicine 23 (8): 5737–5750. https://doi.org/10.1111/jcmm.14488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhongyi, S., Z. Sai, L. Chao, and T. Jiwei. 2015. Effects of nuclear factor kappa B signaling pathway in human intervertebral disc degeneration. Spine 40 (4): 224–232. https://doi.org/10.1097/BRS.0000000000000733.

    Article  PubMed  Google Scholar 

  42. Wang, L., Y. Guo, W.J. Huang, X. Ke, J.L. Poyet, G.A. Manji, S. Merriam, M.A. Glucksmann, P.S. DiStefano, E.S. Alnemri, and J. Bertin. 2001. Card10 is a novel caspase recruitment domain/membrane-associated guanylate kinase family member that interacts with BCL10 and activates NF-kappa B. The Journal of Biological Chemistry 276 (24): 21405–21409.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, S., D. Pan, X.-M. Jia, X. Lin, and X. Zhao. 2017. The CARMA3-BCL10-MALT1 (CBM) complex contributes to DNA damage-induced NF-κB activation and cell survival. Protein & Cell 8 (11): 856–860. https://doi.org/10.1007/s13238-017-0441-3.

    Article  CAS  Google Scholar 

  44. McAllister-Lucas, L.M., J. Ruland, K. Siu, X. Jin, S. Gu, D.S.L. Kim, P. Kuffa, D. Kohrt, T.W. Mak, G. Nuñez, and P.C. Lucas. 2007. CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. Proceedings of the National Academy of Sciences of the United States of America 104 (1): 139–144.

    Article  CAS  PubMed  Google Scholar 

  45. Pan, D., Y. Zhu, Z. Zhou, T. Wang, H. You, C. Jiang, and X. Lin. 2016. The CBM complex underwrites NF-κB activation to promote HER2-associated tumor malignancy. Molecular Cancer Research : MCR. https://doi.org/10.1158/1541-7786.MCR-15-0229-T.

    Article  PubMed  Google Scholar 

  46. Man, X., T. Liu, Y. Jiang, Z. Zhang, Y. Zhu, Z. Li, C. Kong, and J. He. 2019. Silencing of CARMA3 inhibits bladder cancer cell migration and invasion via deactivating β-catenin signaling pathway. OncoTargets and Therapy 12: 6309–6322. https://doi.org/10.2147/OTT.S191502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, Y., Y. Qi, Z. Qiu, and W. Chen. 2021. Deficiency of CARMA3 attenuates the development of bleomycin induced pulmonary fibrosis. Biochemical and Biophysical Research Communications 581: 81–88. https://doi.org/10.1016/j.bbrc.2021.10.013.

    Article  CAS  PubMed  Google Scholar 

  48. Hou, Y., X. Xiao, W. Yu, and S. Qi. 2021. Propofol suppresses microglia inflammation by targeting TGM2/NF-κB signaling. Journal of Immunology Research 2021: 4754454. https://doi.org/10.1155/2021/4754454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, J., Y. Zheng, Y. Luo, Y. Du, X. Zhang, and J. Fu. 2019. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/ TLR4/ NF-κB pathways in BV2 cells. Molecular Immunology 116: 29–37. https://doi.org/10.1016/j.molimm.2019.09.020.

    Article  CAS  PubMed  Google Scholar 

  50. Feng, X., S. Zhu, J. Qiao, Z. Ji, B. Zhou, and W. Xu. 2023. CX3CL1 promotes M1 macrophage polarization and osteoclast differentiation through NF-κB signaling pathway in ankylosing spondylitis in vitro. Journal of Translational Medicine 21 (1): 573. https://doi.org/10.1186/s12967-023-04449-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sarkar, A., M. Duncan, J. Hart, E. Hertlein, D.C. Guttridge, and M.D. Wewers. 2006. ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. Journal of Immunology  (Baltimore, Md. : 1950) 176 (8): 4979–4986.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YDL and DFY were responsible for the conceptualization and design of this study. YDL, GQZ, JNW, YM, JYH, and HF conducted the experiments and collected the data. YDL, GQZ, and JNW analyzed and interpreted the data. YDL drafted the manuscript. DFY supervised and managed the study. All authors approved the final Manuscript.

Corresponding author

Correspondence to Dongfang Yang.

Ethics declarations

Ethics Approval

All experimental procedures were approved by the Ethics Committee of the Dalian Central Hospital (approval number: YN2023-125–01) and were in accordance with the National Institutes of Health guidelines for the care and use of animals.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, G., Wu, J. et al. CARMA3 Drives NF-κB Activation and Promotes Intervertebral Disc Degeneration: Involvement of CARMA3-BCL10-MALT1 Signalosome. Inflammation (2024). https://doi.org/10.1007/s10753-024-02016-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02016-3

KEY WORDS

Navigation