Skip to main content
Log in

Type I/II Immune Balance Contributes to the Protective Effect of AIF-1 on Hepatic Immunopathology Induced by Schistosoma japonicum in a Transgenic Mouse Model

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Schistosomiasis is the second most debilitating neglected tropical disease in the world. Liver egg granuloma and fibrosis are the main damage of schistosomiasis. In this study, the role of allograft inflammatory factor-1 (AIF-1) in liver pathology and its regulation in immune responses were investigated in a transgenic mouse infected with Schistosoma japonicum. We found that AIF-1 overexpression reduced worm burden and decreased egg granuloma sizes and serum alanine aminotransferase levels, along with inhibited hepatic collagen deposition and serum hydroxyproline levels during S. japonicum infection. Moreover, AIF-1 overexpression resulted in an increased ratio of Th1/Th2, increased levels of IFN-γ and T-bet, and lower levels of GATA-3 in the spleen, accompanied by increased M1 percentages, decreased M2 percentages, and thus a higher ratio of M1/M2 in the peritoneal cavity and liver. AIF-1 induced CD68 and iNOS mRNA expression and protein levels of cytoplasmic p-P38 and nuclear NF-κB, along with enhanced levels of TNF-α and TGF-β in macrophages in vitro. Moreover, the hepatic pathology had a negative correlation with Th1/Th2 and M1/M2 ratios in the infected mice. The findings reveal that the beneficial role of AIF-1 in alleviating hepatic damage is related to restoring type I/II immune balance in S. japonicum infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during the current study are included in the article.

References

  1. McManus, D.P., D.W. Dunne, M. Sacko, J. Utzinger, B.J. Vennervald, and X.N. Zhou. 2018. Schistosomiasis. Nature Reviews Disease Primers 4: 13.

    Article  PubMed  Google Scholar 

  2. McManus, D.P., R. Bergquist, P. Cai, S. Ranasinghe, B.M. Tebeje, and H. You. 2020. Schistosomiasis-from immunopathology to vaccines. Seminars in Immunopathology 42: 355–371.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Malta, K.K., T.P. Silva, C. Palazzi, V.H. Neves, L.A.S. Carmo, S.J. Cardoso, and R.C.N. Melo. 2021. Changing our view of the Schistosoma granuloma to an ecological standpoint. Biological Reviews of the Cambridge Philosophical Society 96: 1404–1420.

    Article  PubMed  Google Scholar 

  4. Pearce, E.J., and A.S. MacDonald. 2002. The immunobiology of schistosomiasis. Nature Reviews Immunology 2: 499–511.

    Article  CAS  PubMed  Google Scholar 

  5. Hou, N., X. Piao, S. Liu, C. Wu, and Q. Chen. 2015. Tim-3 induces Th2-biased immunity and alternative macrophage activation during Schistosoma japonicum infection. Infection and Immunity 83: 3074–3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coakley, G., and N.L. Harris. 2020. Interactions between macrophages and helminths. Parasite Immunology 42: e12717.

    Article  CAS  PubMed  Google Scholar 

  7. Barron, L., and T.A. Wynn. 2011. Macrophage activation governs schistosomiasis-induced inflammation and fibrosis. European Journal of Immunology 41: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abdel Aziz, N., F. Musaigwa, P. Mosala, I. Berkiks, and F. Brombacher. 2022. Type 2 immunity: A two-edged sword in schistosomiasis immunopathology. Trends in Immunology 43: 657–673.

    Article  CAS  PubMed  Google Scholar 

  9. Wynn, T.A. 2015. Type 2 cytokines: Mechanisms and therapeutic strategies. Nature Reviews Immunology 15: 271–282.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, B., J. Zhang, H. Chen, H. Nie, H. Miller, Q. Gong, and C. Liu. 2020. T lymphocyte-mediated liver immunopathology of schistosomiasis. Frontiers in Immunology 11: 61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ye, Z., S. Huang, Y. Zhang, X. Mei, H. Zheng, M. Li, J. Chen, and F. Lu. 2020. Galectins, eosinophiles, and macrophages may contribute to Schistosoma japonicum egg-induced immunopathology in a mouse Model. Frontiers in Immunology 11: 146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou, W., Y. Yang, C. Mei, P. Dong, S. Mu, H. Wu, Y. Zhou, Y. Zheng, F. Guo, and J.Q. Yang. 2019. Inhibition of rho-kinase downregulates Th17 cells and ameliorates hepatic fibrosis by Schistosoma japonicum infection. Cells 8: 1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cortes-Selva, D., A.F. Elvington, A. Ready, B. Rajwa, E.J. Pearce, G.J. Randolph, and K.C. Fairfax. 2018. Schistosoma mansoni infection-induced transcriptional changes in hepatic macrophage metabolism correlate with an athero-protective phenotype. Frontiers in Immunology 9: 2580.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Murray, P.J., and T.A. Wynn. 2011. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology 11: 723–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gause, W.C., T.A. Wynn, and J.E. Allen. 2013. Type 2 immunity and wound healing: Evolutionary refinement of adaptive immunity by helminths. Nature Reviews Immunology 13: 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: In vivo veritas. The Journal of Clinical Investigation 122: 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, M. Taghadosi, S.A. Esmaeili, F. Mardani, B. Seifi, A. Mohammadi, J.T. Afshari, and A. Sahebkar. 2018. Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology 233: 6425–6440.

    Article  CAS  PubMed  Google Scholar 

  18. Utans, U., R.J. Arceci, Y. Yamashita, and M.E. Russell. 1995. Cloning and characterization of allograft inflammatory factor-1: A novel macrophage factor identified in rat cardiac allografts with chronic rejection. The Journal of Clinical Investigation 95: 2954–2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, Y.Y., D.J. Yan, and Z.W. Chen. 2013. Role of AIF-1 in the regulation of inflammatory activation and diverse disease processes. Cellular Immunology 284: 75–83.

    Article  CAS  PubMed  Google Scholar 

  20. Autieri, M.V., S. Kelemen, B.A. Thomas, E.D. Feller, B.I. Goldman, and H.J. Eisen. 2002. Allograft inflammatory factor-1 expression correlates with cardiac rejection and development of cardiac allograft vasculopathy. Circulation 106: 2218–2223.

    Article  CAS  PubMed  Google Scholar 

  21. Mishima, T., K. Iwabuchi, S. Fujii, S.Y. Tanaka, H. Ogura, K. Watano-Miyata, N. Ishimori, Y. Andoh, Y. Nakai, C. Iwabuchi, M. Ato, A. Kitabatake, H. Tsutsui, and K. Onoé. 2008. Allograft inflammatory factor-1 augments macrophage phagocytotic activity and accelerates the progression of atherosclerosis in ApoE-/- mice. International Journal of Molecular Medicine 21: 181–187.

    CAS  PubMed  Google Scholar 

  22. Piotrowska, K., S. Słuczanowska-Głabowska, M. Kurzawski, V. Dziedziejko, P. Kopytko, E. Paczkowska, D. Rogińska, K. Safranow, B. Machaliński, and A. Pawlik. 2020. Over-expression of allograft inflammatory factor-1 (AIF-1) in patients with rheumatoid arthritis. Biomolecules 10: 1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagahara, H., T. Seno, A. Yamamoto, H. Obayashi, T. Inoue, T. Kida, A. Nakabayashi, Y. Kukida, K. Fujioka, W. Fujii, K. Murakami, M. Kohno, and Y. Kawahito. 2018. Role of allograft inflammatory factor-1 in bleomycin-induced lung fibrosis. Biochemical and Biophysical Research Communications 495: 1901–1907.

    Article  CAS  PubMed  Google Scholar 

  24. Sikora, M., B. Kopeć, K. Piotrowska, and A. Pawlik. 2020. Role of allograft inflammatory factor-1 in pathogenesis of diseases. Immunology Letters 218: 1–4.

    Article  CAS  PubMed  Google Scholar 

  25. Cano-Martínez, D., J. Monserrat, B. Hernández-Breijo, P. Sanmartín Salinas, M. Álvarez-Mon, M. Val Toledo-Lobo, and L.G. Guijarro. 2020. Extracellular allograft inflammatory factor-1 (AIF-1) potentiates Th1 cell differentiation and inhibits Treg response in human peripheral blood mononuclear cells from normal subjects. Human Immunology 81: 91–100.

    Article  PubMed  Google Scholar 

  26. Yang, Z.F., D.W. Ho, C.K. Lau, C.T. Lam, C.T. Lum, R.T. Poon, and S.T. Fan. 2005. Allograft inflammatory factor-1 (AIF-1) is crucial for the survival and pro-inflammatory activity of macrophages. International Immunology 17: 1391–1397.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Q.R., F. Guan, D.J. Yan, D.S. Lei, L. Fu, H.S. Xia, Y.H. Zhu, Z.W. Chen, and A.O. Niu. 2012. The dynamic expression of allograft inflammatory factor-1 in hepatic tissues and splenic cells of BALB/c mice with Schistosoma japonicum infection. Tissue Antigens 79: 33–41.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Q.R., F. Guan, S.M. Song, J.K. Jin, D.S. Lei, C.M. Chen, J.H. Lei, Z.W. Chen, and A.O. Niu. 2014. Allograft inflammatory factor-1 alleviates liver disease of BALB/c mice infected with Schistosoma japonicum. Parasitology Research 113: 2629–2639.

    Article  PubMed  Google Scholar 

  29. Guan, F., C. Zhang, C. Jiang, M.L. Jacques, Y. Bai, S. Lu, W. Liu, and J. Lei. 2020. ApoE deficiency promotes hepatic pathology by aggravating Th17/Treg imbalance in murine schistosomiasis japonica. Parasite Immunology 42: e12785.

    Article  CAS  PubMed  Google Scholar 

  30. Hou, X., F. Zhu, W. Zheng, M.L. Jacques, J. Huang, F. Guan, and J. Lei. 2022. Protective effect of Schistosoma japonicum eggs on TNBS-induced colitis is associated with regulating Treg/Th17 balance and reprogramming glycolipid metabolism in mice. Frontiers in Cellular and Infection Microbiology 12: 1028899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao, F., X. Huang, X. Hou, Y. Deng, M. Wu, F. Guan, W. Liu, Y. Li, and J. Lei. 2013. Schistosoma japonicum: Susceptibility of neonate mice born to infected and noninfected mothers following subsequent challenge. Parasite Immunology 35: 157–163.

    Article  CAS  PubMed  Google Scholar 

  32. Keating, C., P. Pelegrin, C.M. Martínez, and D. Grundy. 2011. P2X7 receptor-dependent intestinal afferent hypersensitivity in a mouse model of postinfectious irritable bowel syndrome. The Journal of Immunology 187: 1467–1474.

    Article  CAS  PubMed  Google Scholar 

  33. Bai, Y., F. Guan, F. Zhu, C. Jiang, X. Xu, F. Zheng, W. Liu, and J. Lei. 2021. IL-33/ST2 axis deficiency exacerbates hepatic pathology by regulating Treg and Th17 cells in murine Schistosomiasis japonica. Journal of Inflammation Research 14: 5981–5998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Panoskaltsis, N., C.D. Reid, and S.C. Knight. 2003. Quantification and cytokine production of circulating lymphoid and myeloid cells in acute myelogenous leukaemia. Leukemia 17: 716–730.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, C., C. Ma, L. Gong, Y. Guo, K. Fu, Y. Zhang, H. Zhou, and Y. Li. 2021. Macrophage polarization and its role in liver disease. Frontiers in Immunology 12: 803037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu, J., Z. Xu, X. Chen, S. Zhou, W. Zhang, Y. Chi, W. Li, X. Song, F. Liu, and C. Su. 2014. Parasitic antigens alter macrophage polarization during Schistosoma japonicum infection in mice. Parasites & Vectors 7: 122.

    Article  Google Scholar 

  37. Nakashima, H., B.M. Kearney, A. Kato, H. Miyazaki, S. Ito, M. Nakashima, and M. Kinoshita. 2023. Novel phenotypical and functional sub-classification of liver macrophages highlights changes in population dynamics in experimental mouse models. Cytometry A 103 (11): 902–914.

    Article  CAS  PubMed  Google Scholar 

  38. Bos, A.V., M.M.J. van Gool, A.C. Breedveld, R. van der Mast, C. Marsman, G. Bouma, M.A. van de Wiel, S.M. van Ham, R.E. Mebius, and M. van Egmond. 2022. Fcα receptor-1-activated monocytes promote B lymphocyte migration and IgA isotype switching. International Journal of Molecular Sciences 23: 11132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, W.S., J.S. Shin, D.S. Jang, and K.T. Lee. 2016. Cnidilide, an alkylphthalide isolated from the roots of Cnidium officinale, suppresses LPS-induced NO, PGE2, IL-1β, IL-6 and TNF-α production by AP-1 and NF-κB inactivation in RAW 264.7 macrophages. International Immunopharmacology 40: 146–155.

    Article  CAS  PubMed  Google Scholar 

  40. Stadecker, M.J., H. Asahi, E. Finger, H.J. Hernandez, L.I. Rutitzky, and J. Sun. 2004. The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunological Reviews 201: 168–179.

    Article  CAS  PubMed  Google Scholar 

  41. Hoffmann, K.F., S.L. James, A.W. Cheever, and T.A. Wynn. 1999. Studies with double cytokine-deficient mice reveal that highly polarized Th1- and Th2-type cytokine and antibody responses contribute equally to vaccine-induced immunity to Schistosoma mansoni. The Journal of Immunology 163: 927–938.

    Article  CAS  PubMed  Google Scholar 

  42. Gause, W.C., C. Rothlin, and P. Loke. 2020. Heterogeneity in the initiation, development and function of type 2 immunity. Nature Reviews Immunology 20: 603–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Van Dyken, S.J., and R.M. Locksley. 2013. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: Roles in homeostasis and disease. Annual Review of Immunology 31: 317–343.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nagahara, H., A. Yamamoto, T. Seno, H. Obayashi, T. Kida, A. Nakabayashi, Y. Kukida, K. Fujioka, W. Fujii, K. Murakami, M. Kohno, and Y. Kawahito. 2016. Allograft inflammatory factor-1 in the pathogenesis of bleomycin induced acute lung injury. Bioscience Trends 10: 47–53.

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Y., W. Chen, F. Zheng, H. Yu, and K. Wei. 2022. Xanthatin alleviates LPS-induced inflammatory response in RAW264.7 macrophages by inhibiting NF-κB, MAPK and STATs activation. Molecules 27: 4603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, Y.S., C.B. Ahn, and J.Y. Je. 2016. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chemistry 202: 9–14.

    Article  CAS  PubMed  Google Scholar 

  47. Venkatesan, T., E.J. Park, Y.W. Choi, J. Lee, and Y.K. Kim. 2017. Anti-inflammatory activity of Ternstroemia gymnanthera stem bark extracts in bacterial lipopolysaccharide-stimulated RAW264.7 murine macrophage cells. Pharmaceutical Biology 55: 837–846.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carter, A.B., K.L. Knudtson, M.M. Monick, and G.W. Hunninghake. 1999. The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). Journal of Biological Chemistry 274: 30858–30863.

    Article  CAS  PubMed  Google Scholar 

  49. Guijarro, L.G., D. Cano-Martínez, M.V. Toledo-Lobo, L. Ruiz-Llorente, M. Chaparro, I. Guerra, M. Iborra, J.L. Cabriada, L. Bujanda, C. Taxonera, V. García-Sánchez, I. Marín-Jiménez, M. Barreiro-de Acosta, I. Vera, M.D. Martín-Arranz, F. Mesonero, L. Sempere, F. Gomollón, J. Hinojosa, S. Zoullas, J. Monserrat, C. Menor-Salvan, M. Alvarez-Mon, J.P. Gisbert, M.A. Ortega, and B. Hernández-Breijo. 2022. Evaluation of AIF-1 (allograft inflammatory factor-1) as a biomarker of Crohn’s disease severity. Biomedicines 10: 727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Q., S. Sun, C. Zhu, F. Xie, Q. Cai, H. Sun, G. Chen, X. Liang, H. Xie, J. Shi, Y. Liao, and J. Zhou. 2018. Expression of allograft inflammatory factor-1 (AIF-1) in hepatocellular carcinoma. Medical Science Monitor 24: 6218–6228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hao, J., J. Tang, L. Zhang, X. Li, and L. Hao. 2020. The crosstalk between calcium ions and aldosterone contributes to inflammation, apoptosis, and calcification of VSMC via the AIF-1/NF- κ B pathway in uremia. Oxidative Medicine and Cellular Longevity 2020: 3431597.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to sincerely appreciate Professor Zhengwang Chen from College of Life Science and Technology, Huazhong University of Science and Technology, for the kind gift of recombination protein of AIF-1.

Funding

This work was supported by the National Nature Science Foundation of China (grants 81772220 to Jiahui Lei and 81201310 to Fei Guan).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, data curation, analysis, and manuscript-original draft preparation were performed by Jiahui Lei. The methodology, data curation and analysis were performed by Yujie Feng, Wenwen Zheng, Mwadini Khamis, and Jinyuan Zhang. The analysis was completed by Xiao Hou. Fei Guan performed the conceptualization, data curation, analysis, manuscript-original draft preparation, reviewing and editing, and supervision. All authors read and approved the previous and final manuscript.

Corresponding author

Correspondence to Fei Guan.

Ethics declarations

Ethics Approval

All animal experiments were in accordance with the regulations of the Animal Care and Use Committee of Tongji Medical College, Huazhong University of Science and Technology (SCXK2020-0001). Experiments on animal infection and sacrifice were carried out under anesthesia.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2120 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Feng, Y., Zheng, W. et al. Type I/II Immune Balance Contributes to the Protective Effect of AIF-1 on Hepatic Immunopathology Induced by Schistosoma japonicum in a Transgenic Mouse Model. Inflammation (2024). https://doi.org/10.1007/s10753-024-02010-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02010-9

KEY WORDS

Navigation