Skip to main content
Log in

Therapeutic Effect of Levetiracetam Against Thioacetamide-Induced Hepatic Encephalopathy Through Inhibition of Oxidative Stress and Downregulation of NF-κB, NLRP3, iNOS/NO, Pro-Inflammatory Cytokines and Apoptosis

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Hepatic encephalopathy (HE) is a serious brain disorder which associated with neurological and psychiatric manifestations. Oxidative stress and neuroinflammation and apoptosis play main roles in the development of brain damage in HE. Levetiracetam is an antiseizure drug with established antioxidant and anti-inflammatory activities. In the present study we investigated the therapeutic effects of levetiracetam against brain injury in HE and its underlying mechanisms of action. Male C57BL/6 mice were subjected to the induction of HE by the injection of thioacetamide (200 mg/kg) for 2 days. Mice were treated with levetiracetam at two doses (50 or 100 mg/kg/day) for 3 days in the treatment groups. Animals were subjected to a behavioral test and the brain tissues were dissected for histopathological, biochemical, gene expression and immunofluorescence analysis. The results showed that levetiracetam alleviated body weight loss and improved locomotor activity of mice with HE. Levetiracetam treatment decreased the histopathological changes, lipid peroxidation and protein carbonylation while restored the antioxidants (GSH, SOD and CAT) in the brain. Levetiracetam decreased the expression and activity of NF-κB, NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IFN-γ) in the brain tissue. Administration of levetiracetam inhibited iNOS/NO pathway and myeloperoxidase (MPO) activity in the brain. Moreover, caspase-3 was decreased and the ratio of Bcl2/Bax was increased in the brain of mice treated with levetiracetam. These findings suggest that levetiracetam may be a promising therapeutic agent for brain injury in HE through inhibiting the oxidative, inflammatory and apoptotic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ferenci, P. 2017. Hepatic encephalopathy. Gastroenterol Report (Oxf) 5 (2): 138–147.

    Article  Google Scholar 

  2. Amirshahrokhi, K., and A. Niapour. 2022. Carvedilol attenuates brain damage in mice with hepatic encephalopathy. International Immunopharmacology 111: 109119.

    Article  CAS  PubMed  Google Scholar 

  3. Bosoi, C.R., and C.F. Rose. 2013. Oxidative stress: A systemic factor implicated in the pathogenesis of hepatic encephalopathy. Metabolic Brain Disease 28 (2): 175–178.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, W., H. Guo, D. Su, H. Xu, H. Gu, and K. Hao. 2019. Ameliorative effect of Magnesium Isoglycyrrhizinate on hepatic encephalopathy by Epirubicin. International Immunopharmacology 75: 105774.

    Article  CAS  PubMed  Google Scholar 

  5. Althurwi, H.N., R.F. Abdel-Rahman, G.A. Soliman, H.A. Ogaly, F.K. Alkholifi, R.M. Abd-Elsalam, S.I. Alqasoumi, and M.S. Abdel-Kader. 2022. Protective effect of beta-carotene against myeloperoxidase-mediated oxidative stress and inflammation in rat ischemic brain injury. Antioxidants (Basel). 11 (12): 2344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jayakumar, A.R., K.V. Rama Rao, and M.D. Norenberg. 2015. Neuroinflammation in hepatic encephalopathy: Mechanistic aspects. Journal of Clinical and Experimental Hepatology 5 (Suppl 1): S21–S28.

    Article  PubMed  Google Scholar 

  7. Ochoa-Sanchez, R., and C.F. Rose. 2018. Pathogenesis of hepatic encephalopathy in chronic liver disease. Journal of Clinical and Experimental Hepatology 8 (3): 262–271.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cheon, S.Y., M.Y. Kim, J. Kim, E.J. Kim, E.H. Kam, I. Cho, B.N. Koo, and S.Y. Kim. 2023. Hyperammonemia induces microglial NLRP3 inflammasome activation via mitochondrial oxidative stress in hepatic encephalopathy. Biomedical Journal 46 (5).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu, Y., Y. Yang, X. Chen, D. Jiang, F. Zhang, Y. Guo, B. Hu, G. Xu, S. Peng, L. Wu, and J. Hu. 2023. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors. Translatinal Neurodegeneration 12 (1): 49.

    Article  CAS  Google Scholar 

  10. Contreras-García, I.J., N. Cárdenas-Rodríguez, A. Romo-Mancillas, C. Bandala, S.R. Zamudio, S. Gómez-Manzo, B. Hernández-Ochoa, J.G. Mendoza-Torreblanca, and L.A. Pichardo-Macías. 2022. Levetiracetam mechanisms of action: from molecules to systems. Pharmaceuticals (Basel) 15 (4): 475.

    Article  PubMed  Google Scholar 

  11. Kośmider, K., M. Kamieniak, S.J. Czuczwar, and B. Miziak. 2023. Second generation of antiepileptic drugs and oxidative stress. International Journal of Molecular Sciences 24 (4): 3873.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Labh, R., R. Gupta, M. Narang, S. Halder, and R. Kar. 2021. Effect of valproate and add-on levetiracetam on inflammatory biomarkers in children with epilepsy. Epilepsy & Behavior 125: 108358.

    Article  Google Scholar 

  13. Matsuo, T., R. Komori, M. Nakatani, S. Ochi, A. Yokota-Nakatsuma, J. Matsumoto, F. Takata, S. Dohgu, Y. Ishihara, and K. Itoh. 2022. Levetiracetam suppresses the infiltration of neutrophils and monocytes and downregulates many inflammatory cytokines during epileptogenesis in pilocarpine-induced status epilepticus mice. International Journal of Molecular Sciences 23 (14): 7671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiong, J., H. Zhou, D. Lu, Z. Wang, H. Liu, Y. Sun, J. Xu, Y. Feng, and A. Xing. 2020. Levetiracetam Reduces Early Inflammatory Response After Experimental Intracerebral Hemorrhage by Regulating the Janus Kinase 2 (JAK2)-Signal Transducer and Activator of Transcription 3 (STAT3) Signaling Pathway. Medical Science Monitor 26: e922741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng, X.Y., H.C. Zhang, Y.D. Lv, F.Y. Jin, X.J. Wu, J. Zhu, and Y. Ruan. 2022. Levetiracetam alleviates cognitive decline in Alzheimer’s disease animal model by ameliorating the dysfunction of the neuronal network. Frontiers in Aging Neuroscience 25 (14): 888784.

    Article  Google Scholar 

  16. Erbaş, O., F. Oltulu, M. Yılmaz, A. Yavaşoğlu, and D. Taşkıran. 2016. Neuroprotective effects of chronic administration of levetiracetam in a rat model of diabetic neuropathy. Diabetes Research and Clinical Practice 114: 106–116.

    Article  PubMed  Google Scholar 

  17. Kilicdag, H., K. Daglıoglu, S. Erdogan, A. Guzel, L. Sencar, S. Polat, and S. Zorludemir. 2013. The effect of levetiracetam on neuronal apoptosis in neonatal rat model of hypoxic ischemic brain injury. Early Human Development 89 (5): 355–360.

    Article  CAS  PubMed  Google Scholar 

  18. Mani, V., and Almutairi S. Rashed. 2023. Impact of levetiracetam on cognitive impairment, neuroinflammation, oxidative stress, and neuronal apoptosis caused by lipopolysaccharides in rats. Saudi Pharmaceutical Journal 31 (9): 101728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amirshahrokhi, K., and M. Imani. 2023. Levetiracetam attenuates experimental ulcerative colitis through promoting Nrf2/HO-1 antioxidant and inhibiting NF-κB, proinflammatory cytokines and iNOS/NO pathways. International Immunopharmacology 119: 110165.

    Article  CAS  PubMed  Google Scholar 

  20. Amirshahrokhi, K. 2021. Acrylamide exposure aggravates the development of ulcerative colitis in mice through activation of NF-κB, inflammatory cytokines, iNOS, and oxidative stress. Iranian Journal of Basic Medical Sciences 24 (3): 312–321.

    PubMed  PubMed Central  Google Scholar 

  21. Levine, R.L., D. Garland, C.N. Oliver, A. Amici, I. Climent, A.G. Lenz, B.W. Ahn, S. Shaltiel, and E.R. Stadtman. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 186: 464–478.

    Article  CAS  PubMed  Google Scholar 

  22. de Souza, A.G., A.J.M. Chaves Filho, J.V. Souza Oliveira, D.A.A. de Souza, I.S. Lopes, M.A.J. de Carvalho, K.A. de Lima, F.C. Florenço Sousa, S.M. Mendes Vasconcelos, D. Macedo, and M.M. de França Fonteles. 2019. Prevention of pentylenetetrazole-induced kindling and behavioral comorbidities in mice by levetiracetam combined with the GLP-1 agonist liraglutide: Involvement of brain antioxidant and BDNF upregulating properties. Biomedicine & Pharmacotherapy 109: 429–439.

    Article  Google Scholar 

  23. Ignacio-Mejía, I., I.J. Contreras-García, J.G. Mendoza-Torreblanca, O.N. Medina-Campos, J. Pedraza-Chaverri, M.E. García-Cruz, A. Romo-Mancillas, S. Gómez-Manzo, C. Bandala, M.E. Sánchez-Mendoza, L.A. Pichardo-Macías, and N. Cárdenas-Rodríguez. 2023. Evaluation of the antioxidant activity of levetiracetam in a temporal lobe epilepsy model. Biomedicines. 11 (3): 848.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marini, H., C. Costa, M. Passaniti, M. Esposito, G.M. Campo, R. Ientile, E.B. Adamo, R. Marini, P. Calabresi, D. Altavilla, L. Minutoli, F. Pisani, and F. Squadrito. 2004. Levetiracetam protects against kainic acid-induced toxicity. Life Sciences 74 (10): 1253–1264.

    Article  CAS  PubMed  Google Scholar 

  25. Oliveira, A.A., J.P. Almeida, R.M. Freitas, V.S. Nascimento, L.M. Aguiar, H.V. Júnior, F.N. Fonseca, G.S. Viana, F.C. Sousa, and M.M. Fonteles. 2007. Effects of levetiracetam in lipid peroxidation level, nitrite-nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures. Cellular and Molecular Neurobiology 27 (3): 395–406.

    Article  CAS  PubMed  Google Scholar 

  26. Amirshahrokhi, K., and A. Abzirakan. 2022. Carvedilol attenuates acrylamide-induced brain damage through inhibition of oxidative, inflammatory, and apoptotic mediators. Iranian Journals of Basic Medical Sciences 25 (1): 60–67.

    Google Scholar 

  27. Häussinger, D., M. Butz, A. Schnitzler, and B. Görg. 2021. Pathomechanisms in hepatic encephalopathy. Biological Chemistry 402 (9): 1087–1110.

    Article  PubMed  Google Scholar 

  28. Suárez, I., G. Bodega, E. Arilla, V. Felipo, and B. Fernández. 2006. The expression of nNOS, iNOS and nitrotyrosine is increased in the rat cerebral cortex in experimental hepatic encephalopathy. Neuropathology and Applied Neurobiology 32 (6): 594–604.

    Article  PubMed  Google Scholar 

  29. Mohammad, H.M.F., M.M. Sami, S. Makary, E.A. Toraih, A.O. Mohamed, and S.H. El-Ghaiesh. 2019. Neuroprotective effect of levetiracetam in mouse diabetic retinopathy: Effect on glucose transporter-1 and GAP43 expression. Life Sciences 232: 116588.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y.Y., L. Wang, H. Guo, T.T. Han, Y.H. Chang, and X.C. Cui. 2023. Levetiracetam attenuates diabetes-associated cognitive impairment and microglia polarization by suppressing neuroinflammation. Frontiers in Pharmacology 4: 1145819.

    Article  Google Scholar 

  31. Jayakumar, A.R., J.R. Bethea, X.Y. Tong, J. Gomez, and M.D. Norenberg. 2011. NF-κB in the mechanism of brain edema in acute liver failure: Studies in transgenic mice. Neurobiology of Diseases 41 (2): 498–507.

    Article  CAS  Google Scholar 

  32. Amirshahrokhi, K., and A. Niapour. 2022. Methylsulfonylmethane protects against ethanol-induced brain injury in mice through the inhibition of oxidative stress, proinflammatory mediators and apoptotic cell death.  International Immunopharmacology 106: 108638.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, L., J. Tan, X. Jiang, W. Qian, T. Yang, X. Sun, Z. Chen, and Q. Zhu. 2017. Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy. Biological Research 50 (1): 26.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Amirshahrokhi, K. 2021. Thalidomide reduces glycerol-induced acute kidney injury by inhibition of NF-κB, NLRP3 inflammasome, COX-2 and inflammatory cytokines. Cytokine 144: 155574.

    Article  CAS  PubMed  Google Scholar 

  35. França, M.E.R., R.K.L.G. Ramos, W.H. Oliveira, E. Duarte-Silva, S.M.R. Araújo, D.B. Lós, and C.A. Peixoto. 2019. Tadalafil restores long-term memory and synaptic plasticity in mice with hepatic encephalopathy. Toxicology and Applied Pharmacology 379: 114673.

    Article  PubMed  Google Scholar 

  36. Jiao, F., Y. Wang, Q. Chen, P. Cao, C. Shi, M. Pei, L. Wang, and Z. Gong. 2021. Role of SIRT1 in hepatic encephalopathy: in vivo and in vitro studies focusing on the NLRP3 inflammasome. Oxidative Medicine and Cellular Longevity 2021: 5522708.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang, W., H. Lu, X. Lu, D. Wang, Z. Wang, W. Dai, J. Wang, and P. Liu. 2018. Effect of tumor necrosis factor-α on the expression of the ammonia transporter Rhcg in the brain in mice with acute liver failure. Journal of Neuroinflammation 15 (1): 234.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goral, V., Y. Atayan, and A. Kaplan. 2011. The relation between pathogenesis of liver cirrhosis, hepatic encephalopathy and serum cytokine levels: what is the role of tumor necrosis factor α? Hepatogastroenterology 58 (107–108): 943–8.

    PubMed  Google Scholar 

  39. Rama Rao, K.V., A.R. Jayakumar, X. Tong, V.M. Alvarez, and M.D. Norenberg. 2010. Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes. Journal of Neuroinflammation 7: 66.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim, J.E., H.C. Choi, H.K. Song, S.M. Jo, D.S. Kim, S.Y. Choi, Y.I. Kim, and T.C. Kang. 2010. Levetiracetam inhibits interleukin-1 beta inflammatory responses in the hippocampus and piriform cortex of epileptic rats. Neuroscience Letters 471 (2): 94–99.

    Article  CAS  PubMed  Google Scholar 

  41. Yao, X., W. Yang, Z. Ren, H. Zhang, D. Shi, Y. Li, Z. Yu, Q. Guo, G. Yang, Y. Gu, H. Zhao, and K. Ren. 2021. Neuroprotective and angiogenesis effects of levetiracetam following ischemic stroke in rats. Frontiers in Pharmacology 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Balaha, M., B. De Filippis, A. Cataldi, and V. di Giacomo. 2021. CAPE and neuroprotection: A review. Biomolecules 11 (2): 176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sedik, A.A., A. Hassan, and D.O. Saleh. 2023. Neuromodulatory role of L-arginine: Nitric oxide precursor against thioacetamide-induced-hepatic encephalopathy in rats via downregulation of NF-κB-mediated apoptosis. Environmental Science and Pollution Research International 30 (35): 84791–84804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mondal, P., and S.K. Trigun. 2015. Bacopa monnieri extract (CDRI-08) modulates the NMDA receptor subunits and nNOS-apoptosis axis in cerebellum of hepatic encephalopathy rats. Evidence Based Complementary Alternative Medicine 2015: 535013.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Okkay, U., I. Ferah Okkay, B. Cicek, I.C. Aydin, and M. Ozkaraca. 2022. Hepatoprotective and neuroprotective effect of taxifolin on hepatic encephalopathy in rats. Metabolic Brain Disease 37 (5): 1541–1556.

    Article  CAS  PubMed  Google Scholar 

  46. Tamnanloo, F., R. Ochoa-Sanchez, M.M. Oliveira, C. Lima, M. Lépine, K. Dubois, C. Bosoi, M. Tremblay, L. Sleno, and C.F. Rose. 2023. Multiple ammonia-induced episodes of hepatic encephalopathy provoke neuronal cell loss in bile-duct ligated rats. JHEP Reports 5 (12): 100904.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There was no funding.

Author information

Authors and Affiliations

Authors

Contributions

Keyvan Amirshahrokhi designed the study, analyzed the data, wrote the main manuscript text and prepared figures. Mahsa Imani carried out the experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Keyvan Amirshahrokhi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirshahrokhi, K., Imani, M. Therapeutic Effect of Levetiracetam Against Thioacetamide-Induced Hepatic Encephalopathy Through Inhibition of Oxidative Stress and Downregulation of NF-κB, NLRP3, iNOS/NO, Pro-Inflammatory Cytokines and Apoptosis. Inflammation (2024). https://doi.org/10.1007/s10753-024-02007-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02007-4

KEY WORDS

Navigation