Skip to main content
Log in

Mesenchymal Stem Cells Regulate Microglial Polarization via Inhibition of the HMGB1/TLR4 Signaling Pathway in Diabetic Retinopathy

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) is recognized as the most prevalent retinal degenerative disorder. Inflammatory response usually precedes microvascular alteration and is the primary factor of diabetic retinopathy. Activated microglia express many pro-inflammatory cytokines that exacerbate retina inflammation and disruption. In the present study, we found that MSCs alleviated blood–retina barrier (BRB) breakdown in diabetic rats, as evidenced by reduced retinal edema, decreased vascular leakage, and increased occludin expression. The MSC-treated retinal microglia exhibited reduced expression of M1-phenotype markers in the diabetic rats, including inducible nitric oxide synthase (iNOS), CD16, and pro-inflammatory cytokines. On the other hand, MSCs increased the expression of M2-phenotype markers, such as arginase-1 (Arg-1), CD206, and anti-inflammatory cytokines. HMGB1/TLR4 signaling pathway is activated in DR and inhibited after MSC treatment. Consistent with in vivo evidence, MSCs drove BV2 microglia toward M2 phenotype in vitro. Overexpression of HMGB1 in microglia reversed the effects of MSC treatment, suggesting HMGB1/TLR4 pathway is necessary for MSCs’ regulatory effects on microglia polarization. Collectively, MSCs exert beneficial effects on DR by polarizing microglia from M1 toward M2 phenotype via inhibiting the HMGB1/TLR4 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MSCs:

Mesenchymal stem cells

DR:

Diabetic retinopathy

AGEs:

Advanced glycation end products

BRB:

Blood–retina barrier

HMGB1:

High mobility group box 1

TLR4:

Toll-like receptor 4

STZ:

Streptozotocin

NFL:

Nerve fiber layer

IPL:

Inner plexiform layer

OPL:

Outer plexiform layer

GCL:

Ganglion cell layer

INL:

Inner nuclear layer

ONL:

Outer nuclear layer

References

  1. Nentwich, M.M., and M.W. Ulbig. 2015. Diabetic retinopathy - ocular complications of diabetes mellitus. World Journal of Diabetes 6 (3): 489–499.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yau, J.W., S.L. Rogers, R. Kawasaki, E.L. Lamoureux, J.W. Kowalski, T. Bek, S.J. Chen, J.M. Dekker, A. Fletcher, J. Grauslund, S. Haffner, R.F. Hamman, M.K. Ikram, T. Kayama, B.E. Klein, R. Klein, S. Krishnaiah, K. Mayurasakorn, J.P. O’Hare, T.J. Orchard, M. Porta, M. Rema, M.S. Roy, T. Sharma, J. Shaw, H. Taylor, J.M. Tielsch, R. Varma, J.J. Wang, N. Wang, S. West, L. Xu, M. Yasuda, X. Zhang, P. Mitchell, T.Y. Wong, and G. Meta-analysis for eye disease study. 2012. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35 (3): 556–564.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Simo, R., C. Hernandez, and R. European Consortium for the Early Treatment of Diabetic. 2014. Neurodegeneration in the diabetic eye: New insights and therapeutic perspectives. Trends in Endocrinology and Metabolism 25 (1): 23–33.

    Article  Google Scholar 

  4. Forrester, J.V., L. Kuffova, and M. Delibegovic. 2020. The role of inflammation in diabetic retinopathy. Frontiers in Immunology 11: 583687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vujosevic, S., and R. Simó. 2017. Local and systemic inflammatory biomarkers of diabetic retinopathy: an integrative approach. Invest Ophthalmol Vis Sci 58 (6): Bio68-bio75.

  6. Singh, R., A. Barden, T. Mori, and L. Beilin. 2001. Advanced glycation end-products: A review. Diabetologia 44 (2): 129–146.

    Article  CAS  PubMed  Google Scholar 

  7. Ying, L., Y. Shen, Y. Zhang, Y. Wang, Y. Liu, J. Yin, Y. Wang, J. Yin, W. Zhu, Y. Bao, and J. Zhou. 2021. Association of advanced glycation end products with diabetic retinopathy in type 2 diabetes mellitus. Diabetes Research and Clinical Practice 177: 108880.

    Article  CAS  PubMed  Google Scholar 

  8. Stitt, A.W. 2010. AGEs and diabetic retinopathy. Investigative Ophthalmology & Visual Science 51 (10): 4867–4874.

    Article  Google Scholar 

  9. Tao, D., N. Ni, T. Zhang, C. Li, Q. Sun, L. Wang, and Y. Mei. 2019. Accumulation of advanced glycation end products potentiate human retinal capillary endothelial cells mediated diabetic retinopathy. Molecular Medicine Reports 20 (4): 3719–3727.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Del Rio-Hortega Bereciartu, J. 2020. Pio del Rio-Hortega: The revolution of Glia. Anatomical Record (Hoboken) 303 (5): 1232–1241.

    Article  Google Scholar 

  11. Li, F., D. Jiang, and M.A. Samuel. 2019. Microglia in the developing retina. Neural Development 14 (1): 12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karlstetter, M., R. Scholz, M. Rutar, W.T. Wong, J.M. Provis, and T. Langmann. 2015. Retinal microglia: Just bystander or target for therapy? Progress in Retinal and Eye Research 45: 30–57.

    Article  PubMed  Google Scholar 

  13. Sierra, A., F. de Castro, J. Del Río-Hortega, J. Rafael Iglesias-Rozas, M. Garrosa, and H. Kettenmann. 2016. The “Big-Bang” for modern glial biology: Translation and comments on Pío del Río-Hortega 1919 series of papers on microglia. Glia 64 (11): 1801–1840.

    Article  PubMed  Google Scholar 

  14. Orihuela, R., C.A. McPherson, and G.J. Harry. 2016. Microglial M1/M2 polarization and metabolic states. British Journal of Pharmacology 173 (4): 649–665.

    Article  CAS  PubMed  Google Scholar 

  15. Shi, H., X.L. Wang, H.F. Quan, L. Yan, X.Y. Pei, R. Wang, and X.D. Peng. 2019. Effects of betaine on LPS-stimulated activation of microglial M1/M2 phenotypes by suppressing TLR4/NF-kappaB pathways in N9 cells. Molecules 24 (2).

  16. Moutray, T., J.R. Evans, N. Lois, D.J. Armstrong, T. Peto, and A. Azuara-Blanco. 2018. Different lasers and techniques for proliferative diabetic retinopathy. Cochrane Database Syst Rev 3 (3): Cd012314.

  17. Zhao, M., Y. Sun, and Y. Jiang. 2020. Anti-VEGF therapy is not a magic bullet for diabetic retinopathy. Eye (London, England) 34 (4): 609–610.

    Article  PubMed  Google Scholar 

  18. Shi, M., Z.W. Liu, and F.S. Wang. 2011. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clinical and Experimental Immunology 164 (1): 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi, Y., Y. Wang, Q. Li, K. Liu, J. Hou, C. Shao, and Y. Wang. 2018. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nature Reviews Nephrology 14 (8): 493–507.

    Article  CAS  PubMed  Google Scholar 

  20. Kode, J.A., S. Mukherjee, M.V. Joglekar, and A.A. Hardikar. 2009. Mesenchymal stem cells: Immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11 (4): 377–391.

    Article  CAS  PubMed  Google Scholar 

  21. Song, H.B., S.Y. Park, J.H. Ko, J.W. Park, C.H. Yoon, D.H. Kim, J.H. Kim, M.K. Kim, R.H. Lee, D.J. Prockop, and J.Y. Oh. 2018. Mesenchymal stromal cells inhibit inflammatory lymphangiogenesis in the cornea by suppressing macrophage in a TSG-6-dependent manner. Molecular Therapy 26 (1): 162–172.

    Article  PubMed  Google Scholar 

  22. Agrawal, M., P.K. Rasiah, A. Bajwa, J. Rajasingh, and R. Gangaraju. 2021. Mesenchymal stem cell induced Foxp3(+) Tregs suppress effector T cells and protect against retinal ischemic injury. Cells 10 (11).

  23. Andersson, U., H. Yang, and H. Harris. 2018. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Seminars in Immunology 38: 40–48.

    Article  CAS  PubMed  Google Scholar 

  24. Dai, W., T. Tang, Z. Dai, D. Shi, L. Mo, and Y. Zhang. 2020. Probing the mechanism of hepatotoxicity of hexabromocyclododecanes through toxicological network analysis. Environmental Science and Technology 54 (23): 15235–15245.

    Article  CAS  PubMed  Google Scholar 

  25. Pourrajab, F., M.B. Yazdi, M.B. Zarch, M.B. Zarch, and S. Hekmatimoghaddam. 2015. Cross talk of the first-line defense TLRs with PI3K/Akt pathway, in preconditioning therapeutic approach. Mol Cell Ther 3: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mendiola, A.S., R. Garza, S.M. Cardona, S.A. Mythen, S.A. Lira, K. Akassoglou, and A.E. Cardona. 2016. Fractalkine signaling attenuates perivascular clustering of microglia and fibrinogen leakage during systemic inflammation in mouse models of diabetic retinopathy. Frontiers in Cellular Neuroscience 10: 303.

    PubMed  Google Scholar 

  27. van Hecke, M.V., J.M. Dekker, G. Nijpels, A.C. Moll, R.J. Heine, L.M. Bouter, B.C. Polak, and C.D. Stehouwer. 2005. Inflammation and endothelial dysfunction are associated with retinopathy: The Hoorn Study. Diabetologia 48 (7): 1300–1306.

    Article  CAS  PubMed  Google Scholar 

  28. Joussen, A.M., T. Murata, A. Tsujikawa, B. Kirchhof, S.E. Bursell, and A.P. Adamis. 2001. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. American Journal of Pathology 158 (1): 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yun, J.H., S.W. Park, K.J. Kim, J.S. Bae, E.H. Lee, S.H. Paek, S.U. Kim, S. Ye, J.H. Kim, and C.H. Cho. 2017. Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: Implications for diabetic retinopathy. Journal of Cellular Physiology 232 (5): 1123–1134.

    Article  CAS  PubMed  Google Scholar 

  30. Li, S., R. Hua, Z. Jing, L. Huang, and L. Chen. 2022. Correlation between retinal microstructure detected by optical coherence tomography and best corrected visual acuity in diabetic retinopathy macular edema. Front Endocrinol (Lausanne) 13: 831909.

    Article  PubMed  Google Scholar 

  31. Yu, C., K. Yang, X. Meng, B. Cao, and F. Wang. 2020. Downregulation of long noncoding RNA MIAT in the retina of diabetic rats with tail-vein injection of human umbilical-cord mesenchymal stem cells. International Journal of Medical Sciences 17 (5): 591–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Velthoven, C.T., R.A. Sheldon, A. Kavelaars, N. Derugin, Z.S. Vexler, H.L. Willemen, M. Maas, C.J. Heijnen, and D.M. Ferriero. 2013. Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 44 (5): 1426–1432.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tan, T.T., W.S. Toh, R.C. Lai, and S.K. Lim. 2022. Practical considerations in transforming MSC therapy for neurological diseases from cell to EV. Experimental Neurology 349: 113953.

    Article  CAS  PubMed  Google Scholar 

  34. Regmi, S., S. Pathak, J.O. Kim, C.S. Yong, and J.H. Jeong. 2019. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. European Journal of Cell Biology 98 (5–8): 151041.

    Article  CAS  PubMed  Google Scholar 

  35. Alvarado-Velez, M., S.F. Enam, N. Mehta, J.G. Lyon, M.C. LaPlaca, and R.V. Bellamkonda. 2021. Immuno-suppressive hydrogels enhance allogeneic MSC survival after transplantation in the injured brain. Biomaterials 266: 120419.

    Article  CAS  PubMed  Google Scholar 

  36. Ransohoff, R.M. 2016. A polarizing question: Do M1 and M2 microglia exist? Nature Neuroscience 19 (8): 987–991.

    Article  CAS  PubMed  Google Scholar 

  37. Paolicelli, R.C., A. Sierra, B. Stevens, M.E. Tremblay, A. Aguzzi, B. Ajami, I. Amit, E. Audinat, I. Bechmann, M. Bennett, F. Bennett, A. Bessis, K. Biber, S. Bilbo, M. Blurton-Jones, E. Boddeke, D. Brites, B. Brone, G.C. Brown, O. Butovsky, M.J. Carson, B. Castellano, M. Colonna, S.A. Cowley, C. Cunningham, D. Davalos, P.L. De Jager, B. de Strooper, A. Denes, B.J.L. Eggen, U. Eyo, E. Galea, S. Garel, F. Ginhoux, C.K. Glass, O. Gokce, D. Gomez-Nicola, B. Gonzalez, S. Gordon, M.B. Graeber, A.D. Greenhalgh, P. Gressens, M. Greter, D.H. Gutmann, C. Haass, M.T. Heneka, F.L. Heppner, S. Hong, D.A. Hume, S. Jung, H. Kettenmann, J. Kipnis, R. Koyama, G. Lemke, M. Lynch, A. Majewska, M. Malcangio, T. Malm, R. Mancuso, T. Masuda, M. Matteoli, B.W. McColl, V.E. Miron, A.V. Molofsky, M. Monje, E. Mracsko, A. Nadjar, J.J. Neher, U. Neniskyte, H. Neumann, M. Noda, B. Peng, F. Peri, V.H. Perry, P.G. Popovich, C. Pridans, J. Priller, M. Prinz, D. Ragozzino, R.M. Ransohoff, M.W. Salter, A. Schaefer, D.P. Schafer, M. Schwartz, M. Simons, C.J. Smith, W.J. Streit, T.L. Tay, L.H. Tsai, A. Verkhratsky, R. von Bernhardi, H. Wake, V. Wittamer, S.A. Wolf, L.J. Wu, and T. Wyss-Coray. 2022. Microglia states and nomenclature: A field at its crossroads. Neuron 110 (21): 3458–3483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ronaldson, P.T., and T.P. Davis. 2020. Regulation of blood-brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J Cereb Blood Flow Metab 40 (1_suppl): S6-S24.

  39. Zindel, J., and P. Kubes. 2020. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annual Review of Pathology: Mechanisms of Disease 15: 493–518.

    Article  CAS  Google Scholar 

  40. Fu, Y.J., B. Xu, S.W. Huang, X. Luo, X.L. Deng, S. Luo, C. Liu, Q. Wang, J.Y. Chen, and L. Zhou. 2021. Baicalin prevents LPS-induced activation of TLR4/NF-kappaB p65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacologica Sinica 42 (1): 88–96.

    Article  CAS  PubMed  Google Scholar 

  41. Schultze, S.M., B.A. Hemmings, M. Niessen, and O. Tschopp. 2012. PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis. Expert Reviews in Molecular Medicine 14: e1.

    Article  PubMed  Google Scholar 

  42. Li, Q., W. Wu, D. Gong, R. Shang, J. Wang, and H. Yu. 2021. Propionibacterium acnes overabundance in gastric cancer promote M2 polarization of macrophages via a TLR4/PI3K/Akt signaling. Gastric Cancer 24 (6): 1242–1253.

    Article  CAS  PubMed  Google Scholar 

  43. Xu, S., J. Wang, J. Jiang, J. Song, W. Zhu, F. Zhang, M. Shao, H. Xu, X. Ma, and F. Lyu. 2020. TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death & Disease 11 (8): 693.

    Article  CAS  Google Scholar 

  44. Hua, F., T. Ha, J. Ma, Y. Li, J. Kelley, X. Gao, I.W. Browder, R.L. Kao, D.L. Williams, and C. Li. 2007. Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. The Journal of Immunology 178 (11): 7317–7324.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (grant nos. 81970062 and 81770061 to GY).

Author information

Authors and Affiliations

Authors

Contributions

TJ and CY contributed to collection of data, data analysis, and interpretation. TJ, XH, and ZX performed the whole experimental work. TJ contributed to manuscript writing. YG, SL, and XZ contributed to conception and design, financial support, and final approval of the manuscript. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lingyun Sun, Zhenping Huang or Zhenggao Xie.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 75 KB)

Supplementary file2 (PDF 65 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, J., Yao, G., Chen, Y. et al. Mesenchymal Stem Cells Regulate Microglial Polarization via Inhibition of the HMGB1/TLR4 Signaling Pathway in Diabetic Retinopathy. Inflammation (2024). https://doi.org/10.1007/s10753-024-02005-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02005-6

KEY WORDS

Navigation