Skip to main content

Advertisement

Log in

Quercetin Regulates Microglia M1/M2 Polarization and Alleviates Retinal Inflammation via ERK/STAT3 Pathway

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Retinal inflammation is a pivotal characteristic observed in various retinal degenerative disorders, notably age-related macular degeneration (AMD), primarily orchestrated by the activation of microglia. Targeting the inhibition of microglial activation has emerged as a therapeutic focal point. Quercetin (Qu), ubiquitously present in dietary sources and tea, has garnered attention for its anti-neuroinflammatory properties. However, the impact of Qu on retinal inflammation and the associated mechanistic pathways remains incompletely elucidated. In this study, retinal inflammation was induced in adult male C57BL/6 J mice through intraperitoneal administration of LPS. The results revealed that Qu pre-treatment induces a phenotypic shift in microglia from M1 phenotype to M2 phenotype. Furthermore, Qu attenuated retinal inflammation and stabilized the integrity of the blood-retina barrier (BRB). In vitro experiments revealed that Qu impedes microglial activation, proliferation, and migration, primarily via modulation the ERK/STAT3 signaling pathway. Notably, these actions of Qu significantly contributed to the preservation of photoreceptors. Consequently, Qu pre-treatment holds promise as an effective strategy for controlling retinal inflammation and preserving visual function.

Graphical Abstract

Exposure to LPS, microglia undergo activation and polarization towards the M1 phenotype. The activation of the cellular ERK/STAT3 signaling pathway resulted in the release of a multitude of cytokines. This cascade disrupts the BRB and damage the photoreceptors. In contrast, Qu intervenes in this process by inhibiting the ERK/STAT3 pathway, facilitating a transition in cellular polarization towards the anti-inflammatory M2 phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coleman, H.R., et al. 2008. Age-related macular degeneration. Lancet 372 (9652): 1835–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hata, M., et al. 2023. Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 379 (6627): 45–62.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Tabel, M., et al. 2022. Genetic targeting or pharmacological inhibition of galectin-3 dampens microglia reactivity and delays retinal degeneration. Journal of Neuroinflammation 19 (1): 229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dhodapkar, R.M., D. Martell, and B.P. Hafler. 2022. Glial-mediated neuroinflammatory mechanisms in age-related macular degeneration. Semin Immunopathol 44 (5): 673–683.

    Article  PubMed  Google Scholar 

  5. Masuda, T., et al. 2019. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566 (7744): 388–392.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Akhtar-Schafer, I., et al. 2018. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Molecular Medicine 10 (10): e8259.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Madore, C., et al. 2020. Microglia, lifestyle stress, and neurodegeneration. Immunity 52 (2): 222–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, W., et al. 2022. WKYMVm/FPR2 alleviates spinal cord injury by attenuating the inflammatory response of microglia. Mediators of Inflammation 2022: 4408099.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shu, N., et al. 2023. Apigenin alleviates autoimmune uveitis by inhibiting microglia M1 pro-inflammatory polarization. Investigative Ophthalmology & Visual Science 64 (5): 21.

    Article  CAS  Google Scholar 

  10. Cherry, J.D., J.A. Olschowka, and M.K. O’Banion. 2014. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. Journal of Neuroinflammation 11: 98.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lan, X., et al. 2017. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nature Reviews Neurology 13 (7): 420–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lou, M., et al. 2016. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: in vitro and in vivo. Biomedicine & Pharmacotherapy 84: 1–9.

    Article  CAS  Google Scholar 

  13. Novais, E.J., et al. 2021. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nature Communications 12 (1): 5213.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ortega, J.T., and B. Jastrzebska. 2021. Neuroinflammation as a therapeutic target in retinitis pigmentosa and quercetin as its potential modulator. Pharmaceutics 13 (11): 1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ola, M.S., et al. 2017. Neuroprotective effects of quercetin in diabetic rat retina. Saudi Journal of Biological Sciences 24 (6): 1186–1194.

    Article  CAS  PubMed  Google Scholar 

  16. Sul, O.J., and S.W. Ra. 2021. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules 26 (22): 6949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han, X., et al. 2021. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biology 44: 102010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, L., et al. 2023. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-κB signaling pathway. Biomedicine & Pharmacotherapy 168: 115653.

    Article  CAS  Google Scholar 

  19. Tan, Z., et al. 2022. Quercetin alleviates demyelination through regulating microglial phenotype transformation to mitigate neuropsychiatric symptoms in mice with vascular dementia. Molecular Neurobiology 59 (5): 3140–3158.

    Article  CAS  PubMed  Google Scholar 

  20. Kelly, K.A., et al. 2018. Prior exposure to corticosterone markedly enhances and prolongs the neuroinflammatory response to systemic challenge with LPS. PLoS ONE 13 (1): e0190546.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grada, A., et al. 2017. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. The Journal of Investigative Dermatology 137 (2): e11–e16.

    Article  CAS  PubMed  Google Scholar 

  22. Tang, Y., and W. Le. 2016. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology 53 (2): 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  23. Xu, J., et al. 2020. Prodrug of epigallocatechin-3-gallate alleviates choroidal neovascularization via down-regulating HIF-1alpha/VEGF/VEGFR2 pathway and M1 type macrophage/microglia polarization. Biomedicine & Pharmacotherapy 121: 109606.

    Article  CAS  Google Scholar 

  24. Kaur, C., W.S. Foulds, and E.A. Ling. 2008. Blood-retinal barrier in hypoxic ischaemic conditions: Basic concepts, clinical features and management. Progress in Retinal and Eye Research 27 (6): 622–647.

    Article  CAS  PubMed  Google Scholar 

  25. Fu, X., et al. 2023. Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Frontiers in Molecular Neuroscience 16: 1100254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Altmann, C., and M.H.H. Schmidt. 2018. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration. International Journal of Molecular Sciences 19 (1): 110.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Miller, I., et al. 2018. Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Reports 24 (5): 1105–1112.

    Article  CAS  PubMed  Google Scholar 

  28. Nam, H.Y., et al. 2018. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. Journal of Neuroinflammation 15 (1): 271.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, L., et al. 2023. Regulation of TREM2 on BV2 inflammation through PI3K/AKT/mTOR pathway. Biotechnology and Genetic Engineering Reviews 26 (4): 1–22.

    CAS  Google Scholar 

  30. Qu, W., et al. 2022. Targeting iNOS alleviates early brain injury after experimental subarachnoid hemorrhage via promoting ferroptosis of M1 microglia and reducing neuroinflammation. Molecular Neurobiology 59 (5): 3124–3139.

    Article  CAS  PubMed  Google Scholar 

  31. Gao, X., et al. 2020. Inhibition of LOX-1 prevents inflammation and photoreceptor cell death in retinal degeneration. International Immunopharmacology 80: 106190.

    Article  CAS  PubMed  Google Scholar 

  32. Colak, E., et al. 2012. The impact of inflammation to the antioxidant defense parameters in AMD patients. Aging Clinical and Experimental Research 24 (6): 588–594.

    Article  CAS  PubMed  Google Scholar 

  33. Tan, E., et al. 2004. Expression of cone-photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Investigative Ophthalmology & Visual Science 45 (3): 764–768.

    Article  Google Scholar 

  34. Wang, G., et al. 2012. Understanding and correcting for carbon nanotube interferences with a commercial LDH cytotoxicity assay. Toxicology 299 (2–3): 99–111.

    Article  CAS  PubMed  Google Scholar 

  35. Yu, Z., et al. 2022. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER-ERK-NF-kappaB signaling pathway. Molecular Medicine 28 (1): 142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sinclair, R.J., and P.J. Sinclair. 1991. Carbon dioxide laser in the treatment of cutaneous disorders. Australasian Journal of Dermatology 32 (3): 165–171.

    Article  CAS  PubMed  Google Scholar 

  37. Fang, J.Y., and B.C. Richardson. 2005. The MAPK signalling pathways and colorectal cancer. The lancet Oncology 6 (5): 322–327.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, J.K., and N.J. Kim. 2017. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 22 (8): 1287.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  39. Park, J.Y., et al. 2016. Quercetin-3-O-beta-D-glucuronide suppresses lipopolysaccharide-induced JNK and ERK phosphorylation in LPS-challenged RAW264.7 Cells. Biomolecules and Therapeutics (Seoul) 24 (6): 610–615.

    Article  CAS  Google Scholar 

  40. Cheng, S.C., et al. 2019. Quercetin inhibits the production of IL-1beta-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-kappaB signaling pathways. International Journal of Molecular Sciences 20 (12): 2957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Satriotomo, I., K.K. Bowen, and R. Vemuganti. 2006. JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. Journal of Neurochemistry 98 (5): 1353–1368.

    Article  CAS  PubMed  Google Scholar 

  42. Hillmer, E.J., et al. 2016. STAT3 signaling in immunity. Cytokine & Growth Factor Reviews 31: 1–15.

    Article  Google Scholar 

  43. Zheng, W., et al. 2017. Daidzein inhibits choriocarcinoma proliferation by arresting cell cycle at G1 phase through suppressing ERK pathway in vitro and in vivo. Oncology Reports 38 (4): 2518–2524.

    Article  CAS  PubMed  Google Scholar 

  44. Maldonado-Ruiz, R., et al. 2019. Priming of hypothalamic ghrelin signaling and microglia activation exacerbate feeding in rats’ offspring following maternal overnutrition. Nutrients 11 (6): 1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Voet, S., et al. 2019. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Molecular Medicine 11 (6): e10248.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heneka, M.T., M.P. Kummer, and E. Latz. 2014. Innate immune activation in neurodegenerative disease. Nature Reviews Immunology 14 (7): 463–477.

    Article  CAS  PubMed  Google Scholar 

  47. Vaez, S., et al. 2023. Quercetin and polycystic ovary syndrome; inflammation, hormonal parameters and pregnancy outcome: A randomized clinical trial. American Journal of Reproductive Immunology 89 (3): e13644.

    Article  CAS  PubMed  Google Scholar 

  48. Russo, M., et al. 2012. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochemical Pharmacology 83 (1): 6–15.

    Article  CAS  PubMed  Google Scholar 

  49. Ferry, D.R., et al. 1996. Phase I clinical trial of the flavonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical Cancer Research 2 (4): 659–668.

    CAS  PubMed  Google Scholar 

  50. Kumar, B., et al. 2014. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Experimental Eye Research 125: 193–202.

    Article  CAS  PubMed  Google Scholar 

  51. Brown, E.E., et al. 2019. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biology 24: 101201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kohno, H., et al. 2013. Photoreceptor proteins initiate microglial activation via Toll-like receptor 4 in retinal degeneration mediated by all-trans-retinal. Journal of Biological Chemistry 288 (21): 15326–15341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Silverman, S.M., and W.T. Wong. 2018. Microglia in the retina: Roles in development, maturity, and disease. Annu Rev Vis Sci 4: 45–77.

    Article  PubMed  Google Scholar 

  54. Liang, C., et al. 2023. Neuroprotection by Nrf2 via modulating microglial phenotype and phagocytosis after intracerebral hemorrhage. Heliyon 9 (2): e13777.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  55. Greenhalgh, A.D., et al. 2016. Arginase-1 is expressed exclusively by infiltrating myeloid cells in CNS injury and disease. Brain, Behavior, and Immunity 56: 61–67.

    Article  CAS  PubMed  Google Scholar 

  56. Morris, S.M., Jr. 2007. Arginine metabolism: Boundaries of our knowledge. Journal of Nutrition 137 (6 Suppl 2): 1602S-1609S.

    Article  CAS  PubMed  Google Scholar 

  57. Diaz-Coranguez, M., C. Ramos, and D.A. Antonetti. 2017. The inner blood-retinal barrier: Cellular basis and development. Vision Research 139: 123–137.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Strauss, O. 2005. The retinal pigment epithelium in visual function. Physiological Reviews 85 (3): 845–881.

    Article  CAS  PubMed  Google Scholar 

  59. Fang, M., et al. 2021. Asiatic acid attenuates diabetic retinopathy through TLR4/MyD88/NF-kappaB p65 mediated modulation of microglia polarization. Life Sciences 277: 119567.

    Article  CAS  PubMed  Google Scholar 

  60. Mehrabadi, A.R., et al. 2017. Poly(ADP-ribose) polymerase-1 regulates microglia mediated decrease of endothelial tight junction integrity. Neurochemistry International 108: 266–271.

    Article  CAS  PubMed  Google Scholar 

  61. Ten Bosch, G.J.A., et al. 2021. Multiple sclerosis is linked to MAPK(ERK) overactivity in microglia. Journal of Molecular Medicine (Berlin, Germany) 99 (8): 1033–1042.

    Article  PubMed  Google Scholar 

  62. Goldmann, T., et al. 2013. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nature Neuroscience 16 (11): 1618–1626.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  63. Huiliang, Z., et al. 2021. Zinc induces reactive astrogliosis through ERK-dependent activation of Stat3 and promotes synaptic degeneration. Journal of Neurochemistry 159 (6): 1016–1027.

    Article  PubMed  Google Scholar 

  64. Han, X., et al. 2023. Integrating genetics and metabolomics from multi-ethnic and multi-fluid data reveals putative mechanisms for age-related macular degeneration. Cell Reports Medicine 4 (7): 101085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Raoul, W., et al. 2010. CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration. Journal of Neuroinflammation 7: 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fernandopulle, M.S., J. Lippincott-Schwartz, and M.E. Ward. 2021. RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nature Neuroscience 24 (5): 622–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, S., et al. 2023. Alginate-inulin-chitosan based microspheres alter metabolic fate of encapsulated quercetin, promote short chain fatty acid production, and modulate pig gut microbiota. Food Chemistry 418: 135802.

    Article  CAS  PubMed  Google Scholar 

  68. Tsai, C.F., et al. 2021. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients 14 (1): 67.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ghanchi, F., et al. 2022. An update on long-acting therapies in chronic sight-threatening eye diseases of the posterior segment: AMD, DMO, RVO, uveitis and glaucoma. Eye (London, England) 36 (6): 1154–1167.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (No.81371042), the Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission (No. 22Y11910500), the Shanghai Sailing Program (No. 22YF1406000), the Yunnan Provincial Education Department’s Scientific Research Foundation (No. 2023J0039), the Yunnan Provincial Young and Middle - Aged Academic and Technical Leaders Reserve Talents Project (No. 202305AC160073), and the Yunnan Provincial Department of Science and Technology - Kunming Medical University Joint Fund for Applied Basic Research (No.202301AY070001-086).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. YZ: conceptualization, data collection, data analysis, writing—original draft preparation; JJ and YL: conceptualization, data analysis, writing—review and editing, funding acquisition; XD and FF: data collection, data analysis; LC: writing—review and editing, supervision, resources, project administration. All authors reviewed and approved the final version the manuscript.

Corresponding author

Correspondence to Ling Chen.

Ethics declarations

Ethics Approval

Animal studies were performed in compliance with the ARRIVE guidelines. All experimental procedures strictly adhered to the regulations set forth by the Animal Care and Use Committee of Fudan University in Shanghai, China, under approval number 2023DW008.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Jiang, J., Li, Y. et al. Quercetin Regulates Microglia M1/M2 Polarization and Alleviates Retinal Inflammation via ERK/STAT3 Pathway. Inflammation (2024). https://doi.org/10.1007/s10753-024-01997-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01997-5

KEY WORDS

Navigation