Skip to main content

Advertisement

Log in

PD-L1 Expression Is Increased in LPS-Induced Acute Respiratory Distress Syndrome by PI3K-AKT-Egr-1/C/EBPδ Signaling Pathway

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The role of programmed death ligand 1 (PD-L1) has been extensively investigated in adaptive immune system. However, increasing data show that innate immune responses are also affected by the immune checkpoint molecule. It has been demonstrated that regulation of PD-L1 signaling in macrophages may be a potential therapeutic method for acute respiratory distress syndrome (ARDS). However, the PD-L1 expression pattern in local macrophages and whole lung tissues remains mysterious, hindering optimization of the potential treatment program. Therefore, we aim to determine the PD-L1 expression pattern during ARDS. Our findings show that PD-L1 levels are markedly increased in lipopolysaccharide (LPS)-stimulated lung tissues, which might be attributable to an increase in the gene expression by immune cells, including macrophages and neutrophils. In vitro experiments are performed to explore the mechanism involved in LPS-induced PD-L1 production. We find that PD-L1 generation is controlled by transcription factors early growth response 1 (Egr-1) and CCAAT/enhancer binding protein delta (C/EBPδ). Strikingly, PD-L1 production is enhanced by phosphoinositide-3 kinase (PI3K)–protein kinase B (AKT) signaling pathway via up-regulation of Egr-1 and C/EBPδ expressions. Additionally, we observe that expressions of Egr-1 and C/EBPδ mutually reinforce each other. Moreover, we observe that PD-L1 is protective for ARDS due to its regulatory role in macrophage-associated inflammatory response. In summary, during LPS-induced ARDS, PD-L1 expression, which is beneficial for the disease, is increased via the PI3K-AKT1-Egr-1/C/EBPδ signaling pathway, providing theoretical basis for application of methods controlling PD-L1 signaling in macrophages for ARDS treatment in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data generated in the current study and material-related information are available from the authors on reasonable request.

References

  1. Mowery, N.T., W.T.H. Terzian, and A.C. Nelson. 2020. Acute lung injury. Current Problems in Surgery 57: 100777.

    Article  PubMed  Google Scholar 

  2. Day, C.L., D.E. Kaufmann, P. Kiepiela, J.A. Brown, E.S. Moodley, S. Reddy, E.W. Mackey, J.D. Miller, A.J. Leslie, C. DePierres, Z. Mncube, J. Duraiswamy, B. Zhu, Q. Eichbaum, M. Altfeld, E.J. Wherry, H.M. Coovadia, P.J. Goulder, P. Klenerman, R. Ahmed, G.J. Freeman, and B.D. Walker. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350–354.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Fourcade, J., Z. Sun, M. Benallaoua, P. Guillaume, I.F. Luescher, C. Sander, J.M. Kirkwood, V. Kuchroo, and H.M. Zarour. 2010. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. Journal of Experimental Medicine 207: 2175–2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wherry, E.J., S.J. Ha, S.M. Kaech, W.N. Haining, S. Sarkar, V. Kalia, S. Subramaniam, J.N. Blattman, D.L. Barber, and R. Ahmed. 2007. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27: 670–684.

    Article  CAS  PubMed  Google Scholar 

  5. Akbay, E.A., S. Koyama, J. Carretero, A. Altabef, J.H. Tchaicha, C.L. Christensen, O.R. Mikse, A.D. Cherniack, E.M. Beauchamp, T.J. Pugh, M.D. Wilkerson, P.E. Fecci, M. Butaney, J.B. Reibel, M. Soucheray, T.J. Cohoon, P.A. Janne, M. Meyerson, D.N. Hayes, G.I. Shapiro, T. Shimamura, L.M. Sholl, S.J. Rodig, G.J. Freeman, P.S. Hammerman, G. Dranoff, and K.K. Wong. 2013. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discovery 3: 1355–1363.

    Article  CAS  PubMed  Google Scholar 

  6. Zajac, A.J., J.N. Blattman, K. Murali-Krishna, D.J. Sourdive, M. Suresh, J.D. Altman, and R. Ahmed. 1998. Viral immune evasion due to persistence of activated T cells without effector function. Journal of Experimental Medicine 188: 2205–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, F., X. Huang, C.S. Chung, Y. Chen, N.A. Hutchins, and A. Ayala. 2016. Contribution of programmed cell death receptor (PD)-1 to Kupffer cell dysfunction in murine polymicrobial sepsis. American Journal of Physiology. Gastrointestinal and Liver Physiology 311: G237–G245.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jia, L., K. Liu, T. Fei, Q. Liu, X. Zhao, L. Hou, and W. Zhang. 2021. Programmed cell death-1/programmed cell death-ligand 1 inhibitors exert antiapoptosis and antiinflammatory activity in lipopolysaccharide stimulated murine alveolar macrophages. Experimental and Therapeutic Medicine 21: 400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu, J., J.H. Wang, X.L. Wang, R.M. Tan, X.L. Qi, Z.J. Liu, H.P. Qu, T.T. Pan, Q.Y. Zhan, Y. Zuo, W. Yang, and J.L. Liu. 2020. Soluble PD-L1 improved direct ARDS by reducing monocyte-derived macrophages. Cell Death & Disease 11: 934.

    Article  CAS  Google Scholar 

  10. Cerezo, M., R. Guemiri, S. Druillennec, I. Girault, H. Malka-Mahieu, S. Shen, D. Allard, S. Martineau, C. Welsch, S. Agoussi, C. Estrada, J. Adam, C. Libenciuc, E. Routier, S. Roy, L. Desaubry, A.M. Eggermont, N. Sonenberg, J.Y. Scoazec, A. Eychene, S. Vagner, and C. Robert. 2018. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nature Medicine 24: 1877–1886.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, G., Q. Wen, Y. Zhao, Q. Gao, and Y. Bai. 2013. NF-kappaB plays a key role in inducing CD274 expression in human monocytes after lipopolysaccharide treatment. PLoS ONE 8: e61602.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barsoum, I.B., C.A. Smallwood, D.R. Siemens, and C.H. Graham. 2014. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Research 74: 665–674.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, X., J. Zhou, A. Giobbie-Hurder, J. Wargo, and F.S. Hodi. 2013. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clinical Cancer Research 19: 598–609.

    Article  CAS  PubMed  Google Scholar 

  14. Bu, L.L., G.T. Yu, L. Wu, L. Mao, W.W. Deng, J.F. Liu, A.B. Kulkarni, W.F. Zhang, L. Zhang, and Z.J. Sun. 2017. STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. Journal of Dental Research 96: 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yan, C., P.F. Johnson, H. Tang, Y. Ye, M. Wu, and H. Gao. 2013. CCAAT/enhancer-binding protein delta is a critical mediator of lipopolysaccharide-induced acute lung injury. American Journal of Pathology 182: 420–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan, C., F. Guan, Y. Shen, H. Tang, D. Yuan, H. Gao, and X. Feng. 2016. Bigelovii A protects against lipopolysaccharide-induced acute lung injury by blocking NF-kappaB and CCAAT/enhancer-binding protein delta pathways. Mediators of Inflammation 2016: 9201604.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gao, H.W., R.F. Guo, C.L. Speyer, J. Reuben, T.A. Neff, L.M. Hoesel, N.C. Riedemann, S.A. McClintock, J.V. Sarma, N. Van Rooijen, F.S. Zetoune, and P.A. Ward. 2004. Stat3 activation in acute lung injury. Journal of Immunology 172: 7703–7712.

    Article  CAS  Google Scholar 

  18. Lim, D., W. Kim, C. Lee, H. Bae, and J. Kim. 2018. Macrophage depletion protects against cigarette smoke-induced inflammatory response in the mouse colon and lung. Frontiers in Physiology 9: 47.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Misharin, A.V., L. Morales-Nebreda, G.M. Mutlu, G.R. Budinger, and H. Perlman. 2013. Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. American Journal of Respiratory Cell and Molecular Biology 49: 503–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, X., R. Goncalves, and D.M. Mosser. 2008. The isolation and characterization of murine macrophages. Current Protocols in Immunology 14: 14.1.1–14.1.14.

    Google Scholar 

  21. Yan, C., C. Deng, X. Liu, Y. Chen, J. Ye, R. Cai, Y. Shen, and H. Tang. 2018. TNF-alpha induction of IL-6 in alveolar type II epithelial cells: Contributions of JNK/c-Jun/AP-1 element, C/EBPdelta/C/EBP binding site and IKK/NF-kappaB p65/kappaB site. Molecular Immunology 101: 585–596.

    Article  CAS  PubMed  Google Scholar 

  22. Yan, C., M. Zhu, J. Staiger, P.F. Johnson, and H. Gao. 2012. C5a-regulated CCAAT/enhancer-binding proteins beta and delta are essential in Fcgamma receptor-mediated inflammatory cytokine and chemokine production in macrophages. Journal of Biological Chemistry 287: 3217–3230.

    Article  CAS  PubMed  Google Scholar 

  23. Yan, C., J. Chen, Y. Ding, Z. Zhou, B. Li, C. Deng, D. Yuan, Q. Zhang, and X. Wang. 2021. The crucial role of PPARgamma-Egr-1-pro-inflammatory mediators axis in IgG immune complex-induced acute lung injury. Frontiers in Immunology 12: 634889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muthumani, K., D.J. Shedlock, D.K. Choo, P. Fagone, O.U. Kawalekar, J. Goodman, C.B. Bian, A.A. Ramanathan, P. Atman, P. Tebas, M.A. Chattergoon, A.Y. Choo, and D.B. Weiner. 2011. HIV-mediated phosphatidylinositol 3-kinase/serine-threonine kinase activation in APCs leads to programmed death-1 ligand upregulation and suppression of HIV-specific CD8 T cells. The Journal of Immunology 187: 2932–2943.

    Article  CAS  PubMed  Google Scholar 

  25. Shao, R., Y. Fang, H. Yu, L. Zhao, Z. Jiang, and C.S. Li. 2016. Monocyte programmed death ligand-1 expression after 3–4 days of sepsis is associated with risk stratification and mortality in septic patients: A prospective cohort study. Critical Care 20: 124.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Venet, F., and G. Monneret. 2018. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nature Reviews. Nephrology 14: 121–137.

    Article  CAS  PubMed  Google Scholar 

  27. Tsai, J.C., L. Liu, B.C. Cooley, M.R. DiChiara, J.N. Topper, and W.C. Aird. 2000. The Egr-1 promoter contains information for constitutive and inducible expression in transgenic mice. The FASEB Journal 14: 1870–1872.

    Article  CAS  PubMed  Google Scholar 

  28. Leyva-Illades, D., R.P. Cherla, C.L. Galindo, A.K. Chopra, and V.L. Tesh. 2010. Global transcriptional response of macrophage-like THP-1 cells to Shiga toxin type 1. Infection and Immunity 78: 2454–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thiel, G., and G. Cibelli. 2002. Regulation of life and death by the zinc finger transcription factor Egr-1. Journal of Cellular Physiology 193: 287–292.

    Article  CAS  PubMed  Google Scholar 

  30. Min, I.M., G. Pietramaggiori, F.S. Kim, E. Passegue, K.E. Stevenson, and A.J. Wagers. 2008. The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2: 380–391.

    Article  CAS  PubMed  Google Scholar 

  31. Dinkel, A., K. Warnatz, B. Ledermann, A. Rolink, P.F. Zipfel, K. Burki, and H. Eibel. 1998. The transcription factor early growth response 1 (Egr-1) advances differentiation of pre-B and immature B cells. Journal of Experimental Medicine 188: 2215–2224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pignatelli, M., R. Luna-Medina, A. Perez-Rendon, A. Santos, and A. Perez-Castillo. 2003. The transcription factor early growth response factor-1 (EGR-1) promotes apoptosis of neuroblastoma cells. The Biochemical Journal 373: 739–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pang, Z., R. Raudonis, C. McCormick, and Z. Cheng. 2019. Early Growth Response 1 Deficiency Protects the Host against Pseudomonas aeruginosa Lung Infection. Infection and Immunity 88: e00678–19.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reynolds, P.R., M.G. Cosio, and J.R. Hoidal. 2006. Cigarette smoke-induced Egr-1 upregulates proinflammatory cytokines in pulmonary epithelial cells. American Journal of Respiratory Cell and Molecular Biology 35: 314–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chu, L., T. Wang, Y. Hu, Y. Gu, Z. Su, and H. Jiang. 2013. Activation of Egr-1 in human lung epithelial cells exposed to silica through MAPKs signaling pathways. PLoS ONE 8: e68943.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho, S.J., M.J. Kang, R.J. Homer, H.R. Kang, X. Zhang, P.J. Lee, J.A. Elias, and C.G. Lee. 2006. Role of early growth response-1 (Egr-1) in interleukin-13-induced inflammation and remodeling. Journal of Biological Chemistry 281: 8161–8168.

    Article  CAS  PubMed  Google Scholar 

  37. Russo, M.W., B.R. Sevetson, and J. Milbrandt. 1995. Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription. Proceedings of the National Academy of Sciences USA 92: 6873–6877.

    Article  ADS  CAS  Google Scholar 

  38. Qu, Z., L.A. Wolfraim, J. Svaren, M.U. Ehrengruber, N. Davidson, and J. Milbrandt. 1998. The transcriptional corepressor NAB2 inhibits NGF-induced differentiation of PC12 cells. Journal of Cell Biology 142: 1075–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cantwell, C.A., E. Sterneck, and P.F. Johnson. 1998. Interleukin-6-specific activation of the C/EBPdelta gene in hepatocytes is mediated by Stat3 and Sp1. Molecular and Cellular Biology 18: 2108–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carpenter, C.L., B.C. Duckworth, K.R. Auger, B. Cohen, B.S. Schaffhausen, and L.C. Cantley. 1990. Purification and characterization of phosphoinositide 3-kinase from rat liver. Journal of Biological Chemistry 265: 19704–19711.

    Article  CAS  PubMed  Google Scholar 

  41. Cantley, L.C. 2002. The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Datler, H., A. Vogel, M. Kerndl, C. Baumgartinger, L. Musiejovsky, N. Makivic, S. Frech, B. Niederreiter, T. Haider, M. Puhringer, J.S. Brunner, O. Sharif, and G. Schabbauer. 2019. PI3K activity in dendritic cells exerts paradoxical effects during autoimmune inflammation. Molecular Immunology 111: 32–42.

    Article  CAS  PubMed  Google Scholar 

  43. Diaz-Guerra, M.J., A. Castrillo, P. Martin-Sanz, and L. Bosca. 1999. Negative regulation by phosphatidylinositol 3-kinase of inducible nitric oxide synthase expression in macrophages. The Journal of Immunology 162: 6184–6190.

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J.S., W.M. Nauseef, A. Moeenrezakhanlou, L.M. Sly, S. Noubir, K.G. Leidal, J.M. Schlomann, G. Krystal, and N.E. Reiner. 2007. Monocyte p110alpha phosphatidylinositol 3-kinase regulates phagocytosis, the phagocyte oxidase, and cytokine production. Journal of Leukocyte Biology 81: 1548–1561.

    Article  CAS  PubMed  Google Scholar 

  45. Guha, M., and N. Mackman. 2002. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. Journal of Biological Chemistry 277: 32124–32132.

    Article  CAS  PubMed  Google Scholar 

  46. Luyendyk, J.P., G.A. Schabbauer, M. Tencati, T. Holscher, R. Pawlinski, and N. Mackman. 2008. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. The Journal of Immunology 180: 4218–4226.

    Article  CAS  PubMed  Google Scholar 

  47. Hutchins, N.A., J. Unsinger, R.S. Hotchkiss, and A. Ayala. 2014. The new normal: Immunomodulatory agents against sepsis immune suppression. Trends in Molecular Medicine 20: 224–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laudanski, K., C. Miller-Graziano, W. Xiao, M.N. Mindrinos, D.R. Richards, A. De, L.L. Moldawer, R.V. Maier, P. Bankey, H.V. Baker, B.H. Brownstein, J.P. Cobb, S.E. Calvano, R.W. Davis, and R.G. Tompkins. 2006. Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways. Proceedings of the National Academy of Sciences USA 103: 15564–15569.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (grant numbers 81971858 and 31400751).

Author information

Authors and Affiliations

Authors

Contributions

C.Y., Q.Z., X.X., and X.W. designed the project. C.Y., J.C., B.W., J.W., M.L., and J.T. performed experiments. C.Y., Q.Z., and X.W. prepared the manuscript.

Corresponding authors

Correspondence to Chunguang Yan, Qi Zhang or Ximo Wang.

Ethics declarations

Competing Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 186 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Chen, J., Wang, B. et al. PD-L1 Expression Is Increased in LPS-Induced Acute Respiratory Distress Syndrome by PI3K-AKT-Egr-1/C/EBPδ Signaling Pathway. Inflammation (2024). https://doi.org/10.1007/s10753-024-01988-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01988-6

KEY WORDS

Navigation