Skip to main content

Advertisement

Log in

Inhibition of Pyruvate Dehydrogenase Kinase 4 Protects Cardiomyocytes from lipopolysaccharide-Induced Mitochondrial Damage by Reducing Lactate Accumulation

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction is considered one of the major pathogenic mechanisms of sepsis-induced cardiomyopathy (SIC). Pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of mitochondrial metabolism, is essential for maintaining mitochondrial function. However, its specific role in SIC remains unclear. To investigate this, we established an in vitro model of septic cardiomyopathy using lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Our study revealed a significant increase in PDK4 expression in LPS-treated H9C2 cardiomyocytes. Inhibiting PDK4 with dichloroacetic acid (DCA) improved cell survival, reduced intracellular lipid accumulation and calcium overload, and restored mitochondrial structure and respiratory capacity while decreasing lactate accumulation. Similarly, Oxamate, a lactate dehydrogenase inhibitor, exhibited similar effects to DCA in LPS-treated H9C2 cardiomyocytes. To further validate whether PDK4 causes cardiomyocyte and mitochondrial damage in SIC by promoting lactate production, we upregulated PDK4 expression using PDK4-overexpressing lentivirus in H9C2 cardiomyocytes. This resulted in elevated lactate levels, impaired mitochondrial structure, and reduced mitochondrial respiratory capacity. However, inhibiting lactate production reversed the mitochondrial dysfunction caused by PDK4 upregulation. In conclusion, our study highlights the pathogenic role of PDK4 in LPS-induced cardiomyocyte and mitochondrial damage by promoting lactate production. Therefore, targeting PDK4 and its downstream product lactate may serve as promising therapeutic approaches for treating SIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

We confirm that the manuscript has been read and approved by all named authors. The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Hollenberg, S.M., and M. Singer. 2021. Pathophysiology of sepsis-induced cardiomyopathy. Nature Reviews Cardiology 18 (6): 424–434. https://doi.org/10.1038/s41569-020-00492-2.

    Article  PubMed  Google Scholar 

  2. Pulido, J.N., B. Afessa, M. Masaki, T. Yuasa, S. Gillespie, V. Herasevich, D.R. Brown, and J.K. Oh. 2012. Clinical spectrum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock. Mayo Clinic Proceedings 87 (7): 620–628. https://doi.org/10.1016/j.mayocp.2012.01.018.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blanco, J., A. Muriel-Bombín, V. Sagredo, F. Taboada, F. Gandía, L. Tamayo, J. Collado, A. García-Labattut, et al. 2008. Incidence, organ dysfunction and mortality in severe sepsis: A Spanish multicentre study. Critical Care (London, England) 12 (6): R158. https://doi.org/10.1186/cc7157.

    Article  PubMed  Google Scholar 

  4. Huang, Q., D.H. Liu, C.F. Chen, Y. Han, Z.Q. Huang, J.W. Zhang, and X.M. Zeng. 2021. Pgc-1α promotes phosphorylation, inflammation, and apoptosis in H9c2 cells during the early stage of lipopolysaccharide induction. Inflammation 44 (5): 1771–1781. https://doi.org/10.1007/s10753-021-01453-8.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, T., C.F. Liu, T.N. Zhang, R. Wen, and W.L. Song. 2020. Overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α protects cardiomyocytes from lipopolysaccharide-induced mitochondrial damage and apoptosis. Inflammation 43 (5): 1806–1820. https://doi.org/10.1007/s10753-020-01255-4.

    Article  CAS  PubMed  Google Scholar 

  6. Stanzani, G., M.R. Duchen, and M. Singer. 2019. The role of mitochondria in sepsis-induced cardiomyopathy. Biochimica et Biophysica Acta Molecular Basis of Disease 1865 (4): 759–773. https://doi.org/10.1016/j.bbadis.2018.10.011.

    Article  CAS  PubMed  Google Scholar 

  7. Lelubre, C., and J.L. Vincent. 2018. Mechanisms and treatment of organ failure in sepsis. Nature Reviews Nephrology 14 (7): 417–427. https://doi.org/10.1038/s41581-018-0005-7.

    Article  PubMed  Google Scholar 

  8. Kim, M.J., I.S. Sinam, Z. Siddique, J.H. Jeon, and I.K. Lee. 2023. The link between mitochondrial dysfunction and sarcopenia: An update focusing on the role of pyruvate dehydrogenase kinase 4. Diabetes & Metabolism Journal 47 (2): 153–163. https://doi.org/10.4093/dmj.2022.0305.

    Article  Google Scholar 

  9. Duan, X.L., C.C. Ma, J. Hua, T.W. Xiao, and J. Luan. 2020. Benzyl butyl phthalate (BBP) triggers the malignancy of acute myeloid leukemia cells via upregulation of PDK4. Toxicology in Vitro 62: 104693. https://doi.org/10.1016/j.tiv.2019.104693.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Z., X. Chen, Y. Wang, H. Peng, Y. Wang, Y. Jing, and H. Zhang. 2014. PDK4 protein promotes tumorigenesis through activation of cAMP-response element-binding protein (CREB)-Ras homolog enriched in brain (RHEB)-mTORC1 signaling cascade. The Journal of Biological Chemistry 289 (43): 29739–29749. https://doi.org/10.1074/jbc.M114.584821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tambe, Y., T. Terado, C.J. Kim, K.I. Mukaisho, S. Yoshida, H. Sugihara, H. Tanaka, J. Chida, et al. 2019. Antitumor activity of potent pyruvate dehydrogenase kinase 4 inhibitors from plants in pancreatic cancer. Molecular Carcinogenesis 58 (10): 1726–1737. https://doi.org/10.1002/mc.23045.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, Y., S. Zheng, Y. Lin, and L. Ke. 2021. Circular RNA circ-ERBB2 elevates the warburg effect and facilitates triple-negative breast cancer growth by the microrna 136–5p/pyruvate dehydrogenase kinase 4 axis. Molecular and Cellular Biology 41 (10): e0060920. https://doi.org/10.1128/mcb.00609-20.

    Article  CAS  PubMed  Google Scholar 

  13. Guda, M.R., S. Asuthkar, C.M. Labak, A.J. Tsung, I. Alexandrov, M.J. Mackenzie, D.V. Prasad, and K.K. Velpula. 2018. Targeting PDK4 inhibits breast cancer metabolism. American Journal of Cancer Research 8 (9): 1725–1738.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, W., S.L. Zhang, X. Hu, and K.Y. Tam. 2015. Targeting tumor metabolism for cancer treatment: Is pyruvate dehydrogenase kinases (PDKs) a viable anticancer target? International Journal of Biological Sciences 11 (12): 1390–1400. https://doi.org/10.7150/ijbs.13325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, B., Y. Zhang, and J. Suo. 2021. Increased expression of PDK4 was displayed in gastric cancer and exhibited an association with glucose metabolism. Frontiers in Genetics 12: 689585. https://doi.org/10.3389/fgene.2021.689585.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bowker-Kinley, M.M., W.I. Davis, P. Wu, R.A. Harris, and K.M. Popov. 1998. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal 329 (Pt 1): 191–6. https://doi.org/10.1042/bj3290191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thoudam, T., D. Chanda, I.S. Sinam, B.G. Kim, M.J. Kim, C.J. Oh, J.Y. Lee, M.J. Kim, et al. 2022. Noncanonical PDK4 action alters mitochondrial dynamics to affect the cellular respiratory status. Proceedings of the National Academy of Sciences of the United States of America 119 (34): e2120157119. https://doi.org/10.1073/pnas.2120157119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thoudam, T., C.M. Ha, J. Leem, D. Chanda, J.S. Park, H.J. Kim, J.H. Jeon, Y.K. Choi, et al. 2019. PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes 68 (3): 571–586. https://doi.org/10.2337/db18-0363.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Li J, Qi H, Kong X. 2022. Mechanisms of PALLD, PRKCH, AKAP12, PDK4, and CHIT1 proteins in serum diagnosis of neonatal sepsis. Clinical Laboratory 68 (11). https://doi.org/10.7754/Clin.Lab.2022.210917

  20. Shimada, B.K., L. Boyman, W. Huang, J. Zhu, Y. Yang, F. Chen, M.A. Kane, N. Yadava, et al. 2022. Pyruvate-driven oxidative phosphorylation is downregulated in sepsis-induced cardiomyopathy: A study of mitochondrial proteome. Shock (Augusta, Ga) 57 (4): 553–564. https://doi.org/10.1097/shk.0000000000001858.

    Article  CAS  PubMed  Google Scholar 

  21. Li, G., M. Li, J. Hu, R. Lei, H. Xiong, H. Ji, H. Yin, Q. Wei, et al. 2017. The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis. Oncogene 36 (7): 989–998. https://doi.org/10.1038/onc.2016.265.

    Article  CAS  PubMed  Google Scholar 

  22. Sugden, M.C., and M.J. Holness. 2003. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. American Journal of Physiology Endocrinology and Metabolism 284 (5): E855–E862. https://doi.org/10.1152/ajpendo.00526.2002.

    Article  CAS  PubMed  Google Scholar 

  23. Bhattacharya, B., M.F. Mohd Omar, and R. Soong. 2016. The Warburg effect and drug resistance. British Journal of Pharmacology 173 (6): 970–979. https://doi.org/10.1111/bph.13422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kon, S., K. Ishibashi, H. Katoh, S. Kitamoto, T. Shirai, S. Tanaka, M. Kajita, S. Ishikawa, et al. 2017. Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. Nature Cell Biology 19 (5): 530–541. https://doi.org/10.1038/ncb3509.

    Article  CAS  PubMed  Google Scholar 

  25. Li, X., Y. Yang, B. Zhang, X. Lin, X. Fu, Y. An, Y. Zou, J.X. Wang, et al. 2022. Lactate metabolism in human health and disease. Signal Transduction and Targeted Therapy 7 (1): 305. https://doi.org/10.1038/s41392-022-01151-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nolt, B., F. Tu, X. Wang, T. Ha, R. Winter, D.L. Williams, and C. Li. 2018. Lactate and immunosuppression in sepsis. Shock (Augusta, Ga) 49 (2): 120–125. https://doi.org/10.1097/shk.0000000000000958.

    Article  CAS  PubMed  Google Scholar 

  27. Sun, Y., H. Xu, B. Tan, Q. Yi, H. Liu, T. Chen, H. Xiang, R. Wang, et al. 2022. Andrographolide protects bone marrow mesenchymal stem cells against glucose and serum deprivation under hypoxia via the NRF2 signaling pathway. Stem Cell Research & Therapy 13 (1): 326. https://doi.org/10.1186/s13287-022-03016-6.

    Article  CAS  Google Scholar 

  28. Liu, W., X. Guo, L. Jin, T. Hong, Q. Zhang, F. Su, Y. Shen, S. Li, et al. 2022. Lipocalin-2 participates in sepsis-induced myocardial injury by mediating lipid accumulation and mitochondrial dysfunction. Frontiers in Cardiovascular Medicine 9: 1009726. https://doi.org/10.3389/fcvm.2022.1009726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagner, S., S. Schürmann, S. Hein, J. Schüttler, and O. Friedrich. 2015. Septic cardiomyopathy in rat LPS-induced endotoxemia: Relative contribution of cellular diastolic Ca(2+) removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan. Basic Research in Cardiology 110 (5): 507. https://doi.org/10.1007/s00395-015-0507-4.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, Y., Y. Li, Y. Zhang, D. Hu, S. Zhang, C. Wang, S. Huang, A. Zhang, et al. 2023. NSC228155 alleviates septic cardiomyopathy via protecting mitochondria and inhibiting inflammation. International Immunopharmacology 116.

    Article  CAS  PubMed  Google Scholar 

  31. Mukherjee, R., L.H. Tetri, S.J. Li, G. Fajardo, N.P. Ostberg, K.B. Tsegay, K. Gera, T.T. Cornell, et al. 2023. Drp1/p53 interaction mediates p53 mitochondrial localization and dysfunction in septic cardiomyopathy. Journal of Molecular and Cellular Cardiology 177: 28–37. https://doi.org/10.1016/j.yjmcc.2023.01.008.

    Article  CAS  PubMed  Google Scholar 

  32. Zeng, Z., Q. Huang, L. Mao, J. Wu, S. An, Z. Chen, and W. Zhang. 2021. The pyruvate dehydrogenase complex in sepsis: metabolic regulation and targeted therapy. Frontiers in Nutrition 8: 783164. https://doi.org/10.3389/fnut.2021.783164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brealey, D., M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, et al. 2002. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet (London, England) 360 (9328): 219–223. https://doi.org/10.1016/s0140-6736(02)09459-x.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, T., L. Ye, J. Zhu, B. Tan, Q. Yi, Y. Sun, Q. Xie, H. Xiang, et al. 2023. Inhibition of pyruvate dehydrogenase kinase 4 attenuates myocardial and mitochondrial injury in sepsis-induced cardiomyopathy. The Journal of Infectious Diseases. https://doi.org/10.1093/infdis/jiad365.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Watkins, S.J., G.M. Borthwick, and H.M. Arthur. 2011. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cellular and Developmental Biology. Animal 47 (2): 125–131. https://doi.org/10.1007/s11626-010-9368-1.

    Article  CAS  PubMed  Google Scholar 

  36. Li, C., Y. Niu, H. Zheng, C. Shan, Q. Chen, Z. Yang, L. Zhao, C. Yang, et al. 2019. Metabolic remodeling of cardiomyocytes identified in phosphoinositide-dependent kinase 1-deficient mice. The Biochemical Journal 476 (13): 1943–1954. https://doi.org/10.1042/bcj20190105.

    Article  CAS  PubMed  Google Scholar 

  37. Garikipati, V.N.S., S.K. Verma, D. Jolardarashi, Z. Cheng, J. Ibetti, M. Cimini, Y. Tang, M. Khan, et al. 2017. Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovascular Research 113 (8): 938–949. https://doi.org/10.1093/cvr/cvx052.

    Article  CAS  PubMed  Google Scholar 

  38. Yuko, A.E., V.O. Carvalho Rigaud, J. Kurian, J.H. Lee, N. Kasatkin, M. Behanan, T. Wang, A.M. Luchesse, et al. 2021. LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury. Redox Biology 47: 102162. https://doi.org/10.1016/j.redox.2021.102162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yuan, L., H.G. Ji, X.J. Yan, M. Liu, Y.H. Ding, and X.H. Chen. 2023. Dioscin ameliorates doxorubicin-induced heart failure via inhibiting autophagy and apoptosis by controlling the PDK1-mediated Akt/mTOR signaling pathway. Kaohsiung Journal of Medical Sciences 39 (10): 1022–1029. https://doi.org/10.1002/kjm2.12740.

    Article  CAS  PubMed  Google Scholar 

  40. Churchill, E.N., C.L. Murriel, C.H. Chen, D. Mochly-Rosen, and L.I. Szweda. 2005. Reperfusion-induced translocation of deltaPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circulation Research 97 (1): 78–85. https://doi.org/10.1161/01.RES.0000173896.32522.6e.

    Article  CAS  PubMed  Google Scholar 

  41. Razeghi, P., M.E. Young, J.L. Alcorn, C.S. Moravec, O.H. Frazier, and H. Taegtmeyer. 2001. Metabolic gene expression in fetal and failing human heart. Circulation 104 (24): 2923–2931. https://doi.org/10.1161/hc4901.100526.

    Article  CAS  PubMed  Google Scholar 

  42. Sheeran, F.L., J. Angerosa, N.Y. Liaw, M.M. Cheung, and S. Pepe. 2019. Adaptations in protein expression and regulated activity of pyruvate dehydrogenase multienzyme complex in human systolic heart failure. Oxidative Medicine and Cellular Longevity 2019: 4532592. https://doi.org/10.1155/2019/4532592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gudi, R., M.M. Bowker-Kinley, N.Y. Kedishvili, Y. Zhao, and K.M. Popov. 1995. Diversity of the pyruvate dehydrogenase kinase gene family in humans. The Journal of Biological Chemistry 270 (48): 28989–28994. https://doi.org/10.1074/jbc.270.48.28989.

    Article  CAS  PubMed  Google Scholar 

  44. Chew, M.S., K. Shekar, B.A. Brand, C. Norin, and A.G. Barnett. 2013. Depletion of myocardial glucose is observed during endotoxemic but not hemorrhagic shock in a porcine model. Critical Care (London, England) 17 (4): R164. https://doi.org/10.1186/cc12843.

    Article  PubMed  Google Scholar 

  45. Zheng, Z., H. Ma, X. Zhang, F. Tu, X. Wang, T. Ha, M. Fan, L. Liu, et al. 2017. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. The Journal of Infectious Diseases 215 (9): 1396–1406. https://doi.org/10.1093/infdis/jix138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suetrong, B., and K.R. Walley. 2016. Lactic acidosis in sepsis: It’s not all anaerobic: Implications for diagnosis and management. Chest 149 (1): 252–261. https://doi.org/10.1378/chest.15-1703.

    Article  PubMed  Google Scholar 

  47. Singer, M. 2017. Critical illness and flat batteries. Critical Care (London, England) 21 (Suppl 3): 309. https://doi.org/10.1186/s13054-017-1913-9.

    Article  PubMed  Google Scholar 

  48. Sen, P., K. Gupta, A. Kumari, G. Singh, S. Pandey, and R. Singh. 2021. Wnt/β-catenin antagonist pyrvinium exerts cardioprotective effects in polymicrobial sepsis model by attenuating calcium dyshomeostasis and mitochondrial dysfunction. Cardiovascular Toxicology 21 (7): 517–532. https://doi.org/10.1007/s12012-021-09643-4.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, Y., L. Liu, B. Jin, Y. Wu, L. Xu, X. Chang, L. Hu, G. Wang, et al. 2023. Metrnl alleviates lipid accumulation by modulating mitochondrial homeostasis in diabetic nephropathy. Diabetes 72 (5): 611–626. https://doi.org/10.2337/db22-0680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sudevan, S., M. Takiura, Y. Kubota, N. Higashitani, M. Cooke, R.A. Ellwood, T. Etheridge, N.J. Szewczyk, et al. 2019. Mitochondrial dysfunction causes Ca(2+) overload and ECM degradation-mediated muscle damage in C elegans. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 33 (8): 9540–50. https://doi.org/10.1096/fj.201802298R.

    Article  CAS  PubMed  Google Scholar 

  51. Oh, C.J., M.J. Kim, J.M. Lee, D.H. Kim, I.Y. Kim, S. Park, Y. Kim, K.B. Lee, et al. 2023. Inhibition of pyruvate dehydrogenase kinase 4 ameliorates kidney ischemia-reperfusion injury by reducing succinate accumulation during ischemia and preserving mitochondrial function during reperfusion. Kidney International 104 (4): 724–739. https://doi.org/10.1016/j.kint.2023.06.022.

    Article  CAS  PubMed  Google Scholar 

  52. Cluntun, A.A., R. Badolia, S. Lettlova, K.M. Parnell, T.S. Shankar, N.A. Diakos, K.A. Olson, I. Taleb, et al. 2021. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metabolism 33 (3): 629–48.e10. https://doi.org/10.1016/j.cmet.2020.12.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Chongqing Science and Technology Bureau (No. CSTB2023NSCQ-MSX0603), China Postdoctoral Science Foundation (No. 2023M730447), the National Natural Science Foundation of China grants (No. 82270271), and the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN202300421).

Author information

Authors and Affiliations

Authors

Contributions

T.T.C., Q.M.X., J.Z., and H.X. (Hao Xu) designed experiments. T.T.C. drafted the manuscript. T.T.C., Q.M.X., B.T., Q.Y., J.Z., and H.X. (Hao Xu) edited the manuscript. T.T.C., Q.M.X., H.X. (Han Xiang), R.W., Q.Z., and B.L.H. performed the experiments in vitro. T.T.C., Q.M.X., J.Z., and H.X. (Hao Xu) take responsibility for the accuracy of the analysis of the whole experiment.

Corresponding authors

Correspondence to Jing Zhu or Hao Xu.

Ethics declarations

Competing of Interests

No competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1119 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Xie, Q., Tan, B. et al. Inhibition of Pyruvate Dehydrogenase Kinase 4 Protects Cardiomyocytes from lipopolysaccharide-Induced Mitochondrial Damage by Reducing Lactate Accumulation. Inflammation (2024). https://doi.org/10.1007/s10753-024-01981-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01981-z

KEY WORDS

Navigation