Skip to main content

Advertisement

Log in

Fecal Microbiota Transplantation Alleviates Allergic Rhinitis via CD4+ T Cell Modulation Through Gut Microbiota Restoration

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Allergic rhinitis (AR) is an allergic condition of the upper respiratory tract with a complex pathogenesis, including epithelial barrier disruption, immune regulation, and gut microbiota, which is not yet fully understood. Gut microbiota is closely linked to allergic diseases, including AR. Fecal microbiota transplantation (FMT) has recently been recognized as a potentially effective therapy for allergic diseases. However, the efficacy and mechanism of action of FMT in AR remain unknown. Herein, we aimed to observe the implications of gut microbiota on epithelial barrier function and T cell homeostasis, as well as the effect of FMT in AR, using the ovalbumin (OVA)-induced AR mice. The intestinal microbiota of recipient mice was cleared using an antibiotic cocktail; thereafter, FMT was performed. Subsequently, the nasal symptom scores and histopathological features of colon and nasal mucosa tissues of mice were monitored, and serum OVA-sIgE and cytokines of IL-4, IFNγ, IL-17A, and IL-10 cytokine concentrations were examined. Thereafter, tight junction protein and CD4+ T cell-related transcription factor and cytokine expressions were observed in the colon and nasal mucosa, and changes in the expression of PI3K/AKT/mTOR and NFκB signaling pathway were detected by WB assay in each group. Fecal DNA was extracted from the four mice groups for high-throughput 16S rRNA sequencing. FMT ameliorated nasal symptoms and reduced nasal mucosal inflammation in AR mice. Moreover, according to 16S rRNA sequencing, FMT restored the disordered gut microbiota in AR mice. Following FMT, ZO-1 and claudin-1 and Th1/Th2/Th17-related transcription factor and cytokine expressions were upregulated, whereas Treg cell-related Foxp3 and IL-10 expressions were downregulated. Mechanistic studies have revealed that FMT also inhibited PI3K/AKT/mTOR and NF-κB pathway protein phosphorylation in AR mouse tissues. FMT alleviates allergic inflammation in AR by repairing the epithelial barrier and modulating CD4+ T cell balance and exerts anti-inflammatory effects through the PI3K/AKT/mTOR and NF-κB signaling pathways. Moreover, gut microbiota disorders are involved in AR pathogenesis. Disturbed gut microbiota causes an altered immune-inflammatory state in mice and increases susceptibility to AR. This study suggested the regulatory role of the gut-nose axis in the pathogenesis of AR is an emerging field, which provides novel directions and ideas for the treatment of AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Zhang, Y., F. Lan, and L. Zhang. 2022. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 77 (11): 3309–3319.

    Article  CAS  PubMed  Google Scholar 

  2. Passali, D., C. Cingi, P. Staffa, F. Passali, N.B. Muluk, and M.L. Bellussi. 2018. The International Study of the Allergic Rhinitis Survey: Outcomes from 4 geographical regions. Asia Pacific Allergy 8 (1): e7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hellings, P.W., and B. Steelant. 2020. Epithelial barriers in allergy and asthma. The Journal of Allergy and Clinical Immunology 145 (6): 1499–1509.

    Article  PubMed  Google Scholar 

  4. Komlósi, Z.I., W. van de Veen, N. Kovács, G. Szűcs, M. Sokolowska, L. O’Mahony, et al. 2022. Cellular and molecular mechanisms of allergic asthma. Molecular Aspects of Medicine 85: 100995.

    Article  PubMed  Google Scholar 

  5. Hong, H., S. Liao, F. Chen, Q. Yang, and D.Y. Wang. 2020. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy 75 (11): 2794–2804.

    Article  CAS  PubMed  Google Scholar 

  6. Kortekaas Krohn, I., S.F. Seys, G. Lund, A.C. Jonckheere, I. Dierckx de Casterlé, J.L. Ceuppens, et al. 2020. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy 75 (5): 1155–64.

    Article  CAS  PubMed  Google Scholar 

  7. Zimmermann, P., N. Messina, W.W. Mohn, B.B. Finlay, and N. Curtis. 2019. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: A systematic review. The Journal of Allergy and Clinical Immunology 143 (2): 467–485.

    Article  PubMed  Google Scholar 

  8. Lynch, S.V., and O. Pedersen. 2016. The human intestinal microbiome in health and disease. New England Journal of Medicine 375 (24): 2369–2379.

    Article  CAS  PubMed  Google Scholar 

  9. Hou, K., Z.X. Wu, X.Y. Chen, J.Q. Wang, D. Zhang, C. Xiao, et al. 2022. Microbiota in health and diseases. Signal Transduction and Targeted Therapy 7 (1): 135.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McKenzie, C., J. Tan, L. Macia, and C.R. Mackay. 2017. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunological Reviews 278 (1): 277–295.

    Article  CAS  PubMed  Google Scholar 

  11. Bolte, L.A., A. Vich Vila, F. Imhann, V. Collij, R. Gacesa, V. Peters, et al. 2021. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 70 (7): 1287–1298.

    Article  CAS  PubMed  Google Scholar 

  12. Kemter, A.M., and C.R. Nagler. 2019. Influences on allergic mechanisms through gut, lung, and skin microbiome exposures. The Journal of Clinical Investigation 129 (4): 1483–1492.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Peroni, D.G., G. Nuzzi, I. Trambusti, M.E. Di Cicco, and P. Comberiati. 2020. Microbiome composition and its impact on the development of allergic diseases. Frontiers in Immunology 11: 700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ver Heul, A., J. Planer, and A.L. Kau. 2019. The human microbiota and asthma. Clinical Reviews in Allergy and Immunology 57 (3): 350–363.

    Article  PubMed  Google Scholar 

  15. Chiu, C.Y., Y.L. Chan, M.H. Tsai, C.J. Wang, M.H. Chiang, and C.C. Chiu. 2019. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies. World Allergy Organization Journal 12 (3): 100021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiu, C.Y., Y.L. Chan, M.H. Tsai, C.J. Wang, M.H. Chiang, C.C. Chiu, et al. 2020. Cross-talk between airway and gut microbiome links to IgE responses to house dust mites in childhood airway allergies. Science and Reports 10 (1): 13449.

    Article  CAS  Google Scholar 

  17. Chiu, C.Y., M.L. Cheng, M.H. Chiang, Y.L. Kuo, M.H. Tsai, C.C. Chiu, et al. 2019. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma. Pediatric Allergy and Immunology 30 (7): 689–697.

    Article  PubMed  Google Scholar 

  18. Yamaguchi, T., A. Nomura, A. Matsubara, T. Hisada, Y. Tamada, T. Mikami, et al. 2023. Effect of gut microbial composition and diversity on major inhaled allergen sensitization and onset of allergic rhinitis. Allergology International 72 (1): 135–142.

    Article  CAS  PubMed  Google Scholar 

  19. Nomura, A., A. Matsubara, S. Goto, J. Takahata, K. Sawada, K. Ihara, et al. 2020. Relationship between gut microbiota composition and sensitization to inhaled allergens. Allergology International 69 (3): 437–442.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, L., F. Xu, W. Wan, B. Yu, L. Tang, Y. Yang, et al. 2020. Gut microbial characteristics of adult patients with allergy rhinitis. Microbial Cell Factories 19 (1): 171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anania, C., V.P. Di Marino, F. Olivero, D. De Canditiis, G. Brindisi, F. Iannilli, et al. 2021. Treatment with a probiotic mixture containing Bifidobacterium animalis subsp. Lactis BB12 and Enterococcus faecium L3 for the prevention of allergic rhinitis symptoms in children: a randomized controlled trial. Nutrients 13 (4).

    Article  Google Scholar 

  22. Gupta, A., and S. Khanna. 2017. Fecal microbiota transplantation. Jama. 318 (1): 102.

    PubMed  Google Scholar 

  23. Ooijevaar, R.E., E.M. Terveer, H.W. Verspaget, E.J. Kuijper, and J.J. Keller. 2019. Clinical application and potential of fecal microbiota transplantation. Annual Review of Medicine 70: 335–351.

    Article  CAS  PubMed  Google Scholar 

  24. Park, H.K., Y. Choi, D.H. Lee, S. Kim, J.M. Lee, S.W. Choi, et al. 2020. Altered gut microbiota by azithromycin attenuates airway inflammation in allergic asthma. The Journal of Allergy and Clinical Immunology 145 (5): 1466–9.e8.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J.H., K. Kim, and W. Kim. 2021. Gut microbiota restoration through fecal microbiota transplantation: A new atopic dermatitis therapy. Experimental & Molecular Medicine 53 (5): 907–916.

    Article  CAS  Google Scholar 

  26. Zhou, H., W. Zhang, D. Qin, P. Liu, W. Fan, H. Lv, et al. 2022. Activation of NLRP3 inflammasome contributes to the inflammatory response to allergic rhinitis via macrophage pyroptosis. International Immunopharmacology 110: 109012.

    Article  CAS  PubMed  Google Scholar 

  27. Bokoliya, S.C., Y. Dorsett, H. Panier, and Y. Zhou. 2021. Procedures for fecal microbiota transplantation in murine microbiome studies. Frontiers in Cellular and Infection Microbiology 11: 711055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, Y., J. Zhou, and L. Wang. 2021. Role and mechanism of gut microbiota in human disease. Frontiers in Cellular and Infection Microbiology 11: 625913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, M.S., B. Zhang, Z.L. Gao, R.P. Zheng, D. Marcellin, A. Saro, et al. 2021. Altered diversity and composition of gut microbiota in patients with allergic rhinitis. Microbial Pathogenesis 161 (Pt A): 105272.

    Article  CAS  PubMed  Google Scholar 

  30. Kang, M.G., S.W. Han, H.R. Kang, S.J. Hong, D.H. Kim, and J.H. Choi. 2020. Probiotic NVP-1703 alleviates allergic rhinitis by inducing IL-10 expression: a four-week clinical trial. Nutrients 12 (5).

    Article  Google Scholar 

  31. Russell, S.L., M.J. Gold, M. Hartmann, B.P. Willing, L. Thorson, M. Wlodarska, et al. 2012. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Reports 13 (5): 440–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, Z., Q. Xu, Y. Liu, Y. Wei, S. He, W. Lin, et al. 2022. Vancomycin-induced gut microbiota dysbiosis aggravates allergic rhinitis in mice by altered short-chain fatty acids. Frontiers in Microbiology 13: 1002084.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Akdis, C.A. 2021. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nature Reviews Immunology 21 (11): 739–751.

    Article  CAS  PubMed  Google Scholar 

  34. Nur Husna, S.M., H.T. Tan, N. Md Shukri, N.S. Mohd Ashari, and K.K. Wong. 2021. Nasal epithelial barrier integrity and tight junctions disruption in allergic rhinitis: Overview and pathogenic insights. Frontiers in Immunology 12: 663626.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Steelant, B., R. Farré, P. Wawrzyniak, J. Belmans, E. Dekimpe, H. Vanheel, et al. 2016. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. The Journal of Allergy and Clinical Immunology 137 (4): 1043–53.e5.

    Article  CAS  PubMed  Google Scholar 

  36. Henriquez, O.A., K. Den Beste, E.K. Hoddeson, C.A. Parkos, A. Nusrat, and S.K. Wise. 2013. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions. Int Forum Allergy Rhinol. 3 (8): 630–635.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Roan, F., K. Obata-Ninomiya, and S.F. Ziegler. 2019. Epithelial cell-derived cytokines: More than just signaling the alarm. The Journal of Clinical Investigation 129 (4): 1441–1451.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fujimura, K.E., A.R. Sitarik, S. Havstad, D.L. Lin, S. Levan, D. Fadrosh, et al. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nature Medicine 22 (10): 1187–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi, Y.H., G.C. Shi, H.Y. Wan, L.H. Jiang, X.Y. Ai, H.X. Zhu, et al. 2011. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with allergic asthma. Chinese Medical Journal (Engl) 124 (13): 1951–1956.

    CAS  Google Scholar 

  40. Szabo, S.J., S.T. Kim, G.L. Costa, X. Zhang, C.G. Fathman, and L.H. Glimcher. 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100 (6): 655–669.

    Article  CAS  PubMed  Google Scholar 

  41. Ho, I.C., T.S. Tai, and S.Y. Pai. 2009. GATA3 and the T-cell lineage: Essential functions before and after T-helper-2-cell differentiation. Nature Reviews Immunology 9 (2): 125–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, X., Y. Chen, F. Zhang, Q. Yang, and G. Zhang. 2014. Peripheral Th17/Treg cell-mediated immunity imbalance in allergic rhinitis patients. Brazilian Journal of Otorhinolaryngology 80 (2): 152–155.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Scheinecker, C., L. Göschl, and M. Bonelli. 2020. Treg cells in health and autoimmune diseases: New insights from single cell analysis. Journal of Autoimmunity 110: 102376.

    Article  CAS  PubMed  Google Scholar 

  44. Feng, Y., M.W. Ralls, W. Xiao, E. Miyasaka, R.S. Herman, and D.H. Teitelbaum. 2012. Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction. Annals of the New York Academy of Sciences 1258: 71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomson, A.W., H.R. Turnquist, and G. Raimondi. 2009. Immunoregulatory functions of mTOR inhibition. Nature Reviews Immunology 9 (5): 324–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanti, J.F., F. Ceppo, J. Jager, and F. Berthou. 2012. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol (Lausanne). 3: 181.

    PubMed  Google Scholar 

  47. Duan, F.P., Y.S. Li, T.Y. Hu, X.Q. Pan, F. Ma, Y. Feng, et al. 2022. Dendrobium nobile protects against ovalbumin-induced allergic rhinitis by regulating intestinal flora and suppressing lung inflammation. Chinese Journal of Natural Medicines 20 (6): 443–457.

    Article  CAS  PubMed  Google Scholar 

  48. Ma, B., S.S. Athari, E. Mehrabi Nasab, and L. Zhao. 2021. PI3K/AKT/mTOR and TLR4/MyD88/NF-κB signaling inhibitors attenuate pathological mechanisms of allergic asthma. Inflammation 44 (5): 1895–1907.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, Y., Y. Jing, J. Qiao, B. Luan, X. Wang, L. Wang, et al. 2017. Activation of the mTOR signaling pathway is required for asthma onset. Science and Reports 7 (1): 4532.

    Article  Google Scholar 

  50. Hosseinkhani, F., A. Heinken, I. Thiele, P.W. Lindenburg, A.C. Harms, and T. Hankemeier. 2021. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes. 13 (1): 1–22.

    Article  CAS  PubMed  Google Scholar 

  51. Ghoneum, A., and N. Said. 2019. PI3K-AKT-mTOR and NFκB pathways in ovarian cancer: implications for targeted therapeutics. Cancers (Basel) 11 (7).

    Article  Google Scholar 

  52. Hoesel, B., and J.A. Schmid. 2013. The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer 12: 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China (No. 81970860) provided funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

LD conducted experiments and drafted the manuscript. YT and SW helped in conducting the animal experiments. YH and FL helped in collecting the data. YD and ZT conceived the original idea and revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yuqin Deng or Zezhang Tao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Tang, Y., Wen, S. et al. Fecal Microbiota Transplantation Alleviates Allergic Rhinitis via CD4+ T Cell Modulation Through Gut Microbiota Restoration. Inflammation (2024). https://doi.org/10.1007/s10753-024-01975-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01975-x

KEY WORDS

Navigation