Skip to main content

Advertisement

Log in

Targeting S100A9 Prevents β-Adrenergic Activation–Induced Cardiac Injury

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Altered cardiac innate immunity is highly associated with the progression of cardiac disease states and heart failure. S100A8/A9 is an important component of damage-associated molecular patterns (DAMPs) that is critically involved in the pathogenesis of heart failure, thus considered a promising target for pharmacological intervention. In the current study, initially, we validated the role of S100A8/A9 in contributing to cardiac injury and heart failure via the overactivation of the β-adrenergic pathway and tested the potential use of paquinimod as a pharmacological intervention of S100A8/A9 activation in preventing cardiac dysfunction, collagen deposition, inflammation, and immune cell infiltration in β-adrenergic overactivation–mediated heart failure. This finding was further confirmed by the cardiomyocyte-specific silencing of S100A9 via the use of the adeno-associated virus (AAV) 9-mediated short hairpin RNA (shRNA) gene silencing system. Most importantly, in the assessment of the underlying cellular mechanism by which activated S100A8/A9 cause aggravated progression of cardiac fibrosis and heart failure, we discovered that the activated S100A8/A9 can promote fibroblast-macrophage interaction, independent of inflammation, which is likely a key mechanism leading to the enhanced collagen production. Our results revealed that targeting S100A9 provides dual beneficial effects, which is not only a strategy to counteract cardiac inflammation but also preclude cardiac fibroblast-macrophage interactions. The findings of this study also indicate that targeting S100A9 could be a promising strategy for addressing cardiac fibrosis, potentially leading to future drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AAV:

Adeno-associated virus

RAGE:

Advanced glycation end products

CSF1:

Colony-stimulating factor 1

DEGs:

Differential expression genes

IL:

Interleukin

MI:

Myocardial ischemia

TNF:

Tumor necrosis factor

BNP:

B-type natriuretic peptide

CANTOS:

Canakinumab Anti-inflammatory Thrombosis Outcome Study

CTnI:

Cardiac troponin I

CCR2:

C-C motif receptor 2

DAMPs:

Damage-associated molecular patterns

ELISA:

Enzyme-linked immunosorbent assay

GO:

Gene ontology

GSEA:

Gene set enrichment analysis

IPA:

Ingenuity pathway analysis

IFN:

Interferon

ISO:

Isoprenaline

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MCP-1:

Monocyte chemoattractant protein-1

MPR14:

Myeloid-related protein 14

NCBI:

National Center for Biotechnology Information

SRA:

Sequence Read Archive

shRNA:

Short hairpin RNA

SMA:

Smooth muscle actin

TLR4:

Toll-like receptor 4

TGF:

Transforming growth factor

WGA:

Wheat germ agglutinin

References

  1. Roth, G.A., G.A. Mensah, C.O. Johnson, G. Addolorato, E. Ammirati, L.M. Baddour, et al. 2020. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. Journal of the American College of Cardiology 76: 2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease study. Lancet 395: 200–211.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Townsend, N., D. Kazakiewicz, F. Lucy Wright, A. Timmis, R. Huculeci, A. Torbica, et al. 2022. Epidemiology of cardiovascular disease in Europe Nature Reviews. Cardiology 19: 133–143.

    PubMed  Google Scholar 

  4. Tsao, C.W., A.W. Aday, Z.I. Almarzooq, A. Alonso, A.Z. Beaton, M.S. Bittencourt, et al. 2022. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation CIR0000000000001052.

  5. Adamo, L., C. Rocha-Resende, S.D. Prabhu, and D.L. Mann. 2020. Reappraising the role of inflammation in heart failure. Nature Reviews Cardiology.

  6. Levine, B., J. Kalman, L. Mayer, H.M. Fillit, and M. Packer. 1990. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. The New England journal of medicine 323: 236–241.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y., Z. Huang, and H. Li. 2017. Insights into innate immune signalling in controlling cardiac remodelling. Cardiovascular research 113: 1538–1550.

    Article  CAS  PubMed  Google Scholar 

  8. Paulus, W.J., and M.R. Zile. 2021. From systemic inflammation to myocardial fibrosis: The heart failure with preserved ejection fraction paradigm revisited. Circulation research 128: 1451–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frantz, S., I. Falcao-Pires, J.L. Balligand, J. Bauersachs, D. Brutsaert, M. Ciccarelli, et al. 2018. The innate immune system in chronic cardiomyopathy: A European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. European Journal of Heart Failure 20: 445–459.

    Article  PubMed  Google Scholar 

  10. Steffens, S., M. Nahrendorf, and R. Madonna, 2021. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. European Heart Journal.

  11. Ridker, P.M., B.M. Everett, T. Thuren, J.G. MacFadyen, W.H. Chang, C. Ballantyne, et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England journal of medicine 377: 1119–1131.

    Article  CAS  PubMed  Google Scholar 

  12. Everett, B.M., J.H. Cornel, M. Lainscak, S.D. Anker, A. Abbate, T. Thuren, et al. 2019. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139: 1289–1299.

    Article  CAS  PubMed  Google Scholar 

  13. Cao, D., Y. Liu, X. Chen, J. Liu, J. Liu, W. Lai, et al. 2022. Activation of iNKT cells at the maternal-fetal interface predisposes offspring to cardiac injury. Circulation 145: 1032–1035.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, X., J. Liu, J. Liu, W.J. Wang, W.J. Lai, S.H. Li, et al. 2020. alpha-Galactosylceramide and its analog OCH differentially affect the pathogenesis of ISO-induced cardiac injury in mice. Acta pharmacologica Sinica 41: 1416–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aronoff, L., S. Epelman, and X, Clemente-Casares. 2018. Isolation and identification of extravascular immune cells of the heart. Journal of Visualized Experiments.

  16. Dick, S.A., A. Wong, H. Hamidzada, S. Nejat, R. Nechanitzky, S. Vohra, et al. 2022. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Science Immunology 7: eabf7777.

  17. Qu, X., Y. Liu, D. Cao, J. Chen, Z. Liu, H. Ji, et al. 2019. BMP10 preserves cardiac function through its dual activation of SMAD-mediated and STAT3-mediated pathways. The Journal of biological chemistry 294: 19877–19888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soliman, H., and F.M.V. Rossi. 2020. Cardiac fibroblast diversity in health and disease. Matrix biology : Journal of the International Society for Matrix Biology 91–92: 75–91.

    Article  PubMed  Google Scholar 

  19. Gibb, A.A., M.P. Lazaropoulos, and J.W. Elrod. 2020. Myofibroblasts and fibrosis: Mitochondrial and metabolic control of cellular differentiation. Circulation research 127: 427–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frangogiannis, N.G. 2019. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine 65: 70–99.

    Article  CAS  PubMed  Google Scholar 

  21. Mann, D.L. 2015. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circulation research 116: 1254–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy, S.P., R. Kakkar, C.P. McCarthy, and J.L. Januzzi Jr. 2020. Inflammation in heart failure: JACC state-of-the-art review. Journal of the American College of Cardiology 75: 1324–1340.

    Article  PubMed  Google Scholar 

  23. Altwegg, L.A., M. Neidhart, M. Hersberger, S. Muller, F.R. Eberli, R. Corti, et al. 2007. Myeloid-related protein 8/14 complex is released by monocytes and granulocytes at the site of coronary occlusion: A novel, early, and sensitive marker of acute coronary syndromes. European heart journal 28: 941–948.

    Article  CAS  PubMed  Google Scholar 

  24. Buechler, M.B., W. Fu, and S.J. Turley. 2021. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54: 903–915.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, X., R.A. Franklin, M. Adler, J.B. Jacox, W. Bailis, J.A. Shyer, et al. 2018. Circuit design features of a stable two-cell system. Cell 172 (744–757): e17.

    Google Scholar 

  26. Zhang, Y., J. Bauersachs, and H.F. Langer. 2017. Immune mechanisms in heart failure. European Journal of Heart Failure 19: 1379–1389.

    Article  PubMed  Google Scholar 

  27. Mann, D.L., V.K. Topkara, S. Evans, and P.M. Barger, 2010. Innate immunity in the adult mammalian heart: for whom the cell tolls. Transactions of the American Clinical and Climatological Association 121: 34–50; discussion 50–1.

  28. Jarrah, A.A., and S.T. Tarzami. 2015. The duality of chemokines in heart failure. Expert review of clinical immunology 11: 523–536.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, W., K.J. Lavine, S. Epelman, S.A. Evans, C.J. Weinheimer, P.M. Barger, et al. 2015. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. Journal of the American Heart Association 4: e001993.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parrillo, J.E., R.E. Cunnion, S.E. Epstein, M.M. Parker, A.F. Suffredini, M. Brenner, et al. 1989. A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. The New England journal of medicine 321: 1061–1068.

    Article  CAS  PubMed  Google Scholar 

  31. Martelli, D., S.T. Yao, M.J. McKinley, and R.M. McAllen. 2014. Reflex control of inflammation by sympathetic nerves, not the vagus. Journal of Physiology 592: 1677–1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saito, S., Y. Hiroi, Y. Zou, R. Aikawa, H. Toko, F. Shibasaki, et al. 2000. beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. The Journal of biological chemistry 275: 34528–34533.

    Article  CAS  PubMed  Google Scholar 

  33. Murray, D.R., S.D. Prabhu, and B. Chandrasekar. 2000. Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation 101: 2338–2341.

    Article  CAS  PubMed  Google Scholar 

  34. Mann, D.L. 2002. Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circulation research 91: 988–998.

    Article  CAS  PubMed  Google Scholar 

  35. Xia, G.L., Y.K. Wang, and Z.Q. Huang. 2016. The correlation of serum myeloid-related protein-8/14 and eosinophil cationic protein in patients with coronary artery disease. BioMed Research International 2016: 4980251.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lech, M., J. Guess, J. Duffner, J. Oyamada, C. Shimizu, S. Hoshino, et al. 2019. Circulating markers of inflammation persist in children and adults with giant aneurysms after Kawasaki disease. Circulation: Genomic and Precision Medicine 12: e002433.

  37. Santilli, F., L. Paloscia, R. Liani, M. Di Nicola, M. Di Marco, S. Lattanzio, et al. 2014. Circulating myeloid-related protein-8/14 is related to thromboxane-dependent platelet activation in patients with acute coronary syndrome, with and without ongoing low-dose aspirin treatment. Journal of the American Heart Association 3.

  38. Berg, D.D., R.W. Yeh, L. Mauri, D.A. Morrow, D.J. Kereiakes, D.E. Cutlip, et al. 2021. Biomarkers of platelet activation and cardiovascular risk in the DAPT trial. Journal of Thrombosis and Thrombolysis 51: 675–681.

    Article  PubMed  Google Scholar 

  39. Boyd, J.H., B. Kan, H. Roberts, Y. Wang, and K.R. Walley. 2008. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circulation research 102: 1239–1246.

    Article  CAS  PubMed  Google Scholar 

  40. Müller, I., T. Vogl, K. Pappritz, K. Miteva, K. Savvatis, D. Rohde, et al. 2017. Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in Coxsackievirus B3-induced myocarditis. Circulation: Heart Failure 10.

  41. Wu, Y., Y. Li, C. Zhang, Y. Wang, W. Cui, et al. 2014. S100a8/a9 released by CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-induced cardiac inflammation and injury. Hypertension 63: 1241–50.

  42. Marinkovic, G., H. Grauen Larsen, T. Yndigegn, I.A. Szabo, R.G. Mares, L. de Camp, et al. 2019. Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade improves cardiac function after myocardial infarction. European heart journal 40: 2713–2723.

    Article  CAS  PubMed  Google Scholar 

  43. Sreejit, G., A. Abdel-Latif, B. Athmanathan, R. Annabathula, A. Dhyani, S.K. Noothi, et al. 2020. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 141: 1080–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Volz, H.C., D. Laohachewin, C. Seidel, F. Lasitschka, K. Keilbach, A.R. Wienbrandt, et al. 2012. S100A8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-kappaB signaling. Basic Research in Cardiology 107: 250.

    Article  PubMed  Google Scholar 

  45. Marinkovic, G., D.S. Koenis, L. de Camp, R. Jablonowski, N. Graber, V. de Waard, et al. 2020. S100A9 links inflammation and repair in myocardial infarction. Circulation research 127: 664–676.

    Article  CAS  PubMed  Google Scholar 

  46. Li, Y., B. Chen, X. Yang, C. Zhang, Y. Jiao, P. Li, et al. 2019. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation 140: 751–764.

    Article  CAS  PubMed  Google Scholar 

  47. Jonasson, L., H. Grauen Larsen, A.K. Lundberg, B. Gullstrand, A.A. Bengtsson, and A. Schiopu. 2017. Stress-induced release of the S100A8/A9 alarmin is elevated in coronary artery disease patients with impaired cortisol response. Science and Reports 7: 17545.

    Article  ADS  CAS  Google Scholar 

  48. Fujiu, K., M. Shibata, Y. Nakayama, F. Ogata, S. Matsumoto, K. Noshita, et al. 2017. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nature Medicine 23: 611–622.

    Article  CAS  PubMed  Google Scholar 

  49. Fan, S., H. Zhao, Y. Liu, P. Zhang, Y. Wang, Y. Xu, et al. 2020. Isoproterenol triggers ROS/P53/S100-A9 positive feedback to aggravate myocardial damage associated with complement activation. Chemical Research in Toxicology 33: 2675–2685.

    Article  CAS  PubMed  Google Scholar 

  50. Uderhardt, S., A.J. Martins, J.S. Tsang, T. Lammermann, and R.N. Germain. 2019. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177 (541–555): e17.

    Google Scholar 

  51. Bengtsson, A.A., G. Sturfelt, C. Lood, L. Ronnblom, R.F. van Vollenhoven, B. Axelsson, et al. 2012. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: Studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus. Arthritis and Rheumatism 64: 1579–1588.

    Article  CAS  PubMed  Google Scholar 

  52. Hesselstrand, R., J.H.W. Distler, G. Riemekasten, D.M. Wuttge, M. Torngren, H.C. Nyhlen, et al. 2021. An open-label study to evaluate biomarkers and safety in systemic sclerosis patients treated with paquinimod. Arthritis Research & Therapy 23: 204.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (#82204388 to D. C., #82001693 to X.H., #81773742 and #82273921 to X.L., and # 82104247 to F.W.), Natural Science Foundation of Chongqing (#CSTB2022NSCQ-MSX1446 to D.C.), and Riley Children Foundation (to Y.L. and W.S.).

Author information

Authors and Affiliations

Authors

Contributions

DC designed the research; JL, XC, LZ, CP, LZ, XH, SL, and FW performed the research; JL, XC, YL and DC analyzed the data; XC and DC drafted the manuscript; DC, WS, and XL revised and finalized the manuscript. All authors contributed to and have approved the manuscript.

Corresponding authors

Correspondence to Weinian Shou, Xiaohui Li or Dayan Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 785 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, X., Zeng, L. et al. Targeting S100A9 Prevents β-Adrenergic Activation–Induced Cardiac Injury. Inflammation (2024). https://doi.org/10.1007/s10753-023-01944-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-023-01944-w

KEY WORDS

Navigation