Abstract
Macrophage-mediated inflammation plays a significant role in the development and progression of diabetic kidney disease (DKD). Studies have suggested that impaired macrophage efferocytosis aggravates the inflammatory response. However, its contribution to DKD progression remains unknown. Using single-cell RNA sequencing (scRNA-seq) data obtained from the GSE131882, GSE195460, GSE151302, GSE195460, and GSE131685 datasets, we successfully clustered 13 cell types. Through analysis of the ligand-receptor network, it was discovered that macrophages interact with other cells. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that macrophages exhibit a heightened presence of phagocytosis signaling. We discovered that RAC1 was closely related to macrophage efferocytosis through a Venn diagram and protein-protein interaction (PPI) analysis, which predicted the correlation with the clinical features of DKD using the NephroseqV5 tool. Furthermore, we verified that RAC1 exhibited decreased expression in macrophages cultured with lipopolysaccharide (LPS) and high glucose. Nevertheless, the overexpression of RAC1 promoted macrophage efferocytosis and inhibited the inflammatory response. In summary, our study focused on examining the presence and importance of efferocytosis-related molecules in DKD macrophages. Through a comprehensive analysis using scRNA-seq, we discovered that RAC1 plays a crucial role as an efferocytosis molecule in DKD. These findings enhance our current knowledge of the molecular mechanisms involved in the development of DKD and aid the exploration of new treatments.
Similar content being viewed by others
DATA AVAILABILITY
Data are available from authors upon reasonable request.
REFERENCES
Jung, C.-Y., and T.-H. Yoo. 2022. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes and Metabolism Journal 46: 181–197.
Hu, Q., Y. Chen, X. Deng, Y. Li, X. Ma, J. Zeng, and Y. Zhao. 2023. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomedicine & Pharmacotherapy 159: 114252.
Liu, Y., A. Uruno, R. Saito, N. Matsukawa, E. Hishinuma, D. Saigusa, H. Liu, and M. Yamamoto. 2022. Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice. Redox Biology 58: 102525.
Boada-Romero, E., J. Martinez, B.L. Heckmann, and D.R. Green. 2020. The clearance of dead cells by efferocytosis. Nature Reviews Molecular Cell Biology 21: 398–414.
Doddapattar, P., R. Dev, M. Ghatge, R.B. Patel, M. Jain, N. Dhanesha, S.R. Lentz, and A.K. Chauhan. 2022. Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circulation Research 130: 1289–1305.
Cai, W., X. Dai, J. Chen, J. Zhao, M. Xu, L. Zhang, B. Yang, W. Zhang, M. Rocha, T. Nakao, J. Kofler, Y. Shi, R.A. Stetler, X. Hu, and J. Chen. 2019. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4: e131355.
Birge, R.B., S. Boeltz, S. Kumar, J. Carlson, J. Wanderley, D. Calianese, M. Barcinski, R.A. Brekken, X. Huang, J.T. Hutchins, B. Freimark, C. Empig, J. Mercer, A.J. Schroit, G. Schett, and M. Herrmann. 2016. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death and Differentiation 23: 962–978.
Stuart, T., A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W.M. Mauck, Y. Hao, M. Stoeckius, P. Smibert, and R. Satija. 2019. Comprehensive integration of single-cell data. Cell 177: 1888–1902.
Fu, J., K.M. Akat, Z. Sun, W. Zhang, D. Schlondorff, Z. Liu, T. Tuschl, K. Lee, and J.C. He. 2019. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. Journal of the American Society of Nephrology 30: 533–545.
Wilson, P.C., H. Wu, Y. Kirita, K. Uchimura, N. Ledru, H.G. Rennke, P.A. Welling, S.S. Waikar, and B.D. Humphreys. 2019. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proceedings of the National Academy of Sciences 116: 19619–19625.
Wei, Y., X. Gao, A. Li, M. Liang, and Z. Jiang. 2021. Single-nucleus transcriptomic analysis reveals important cell cross-talk in diabetic kidney disease. Frontiers in Medicine 8: 657956.
Lu, X., L. Li, L. Suo, P. Huang, H. Wang, S. Han, and M. Cao. 2022. Single-cell RNA sequencing profiles identify important pathophysiologic factors in the progression of diabetic nephropathy. Frontiers in Cell and Developmental Biology 10: 798316.
Cai, X.-Y., Z.-F. Wang, S.-W. Ge, and G. Xu. 2022. Identification of hub genes and immune-related pathways for membranous nephropathy by bioinformatics analysis. Frontiers in Physiology 13: 914382.
Aran, D., A.P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R.P. Naikawadi, P.J. Wolters, A.R. Abate, A.J. Butte, and M. Bhattacharya. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology 20: 163–172.
Efremova, M., M. Vento-Tormo, S.A. Teichmann, and R. Vento-Tormo. 2020. Cell PhoneDB: Inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nature Protocols 15: 1484–1506.
Shannon, P., A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.
Szklarczyk, D., A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, L.J. Jensen, and C. von Mering. 2021. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research 49: D605–D612.
Muto, Y., E.E. Dixon, Y. Yoshimura, H. Wu, K. Omachi, N. Ledru, P.C. Wilson, A.J. King, N. Eric Olson, M.G. Gunawan, J.J. Kuo, J.H. Cox, J.H. Miner, S.L. Seliger, O.M. Woodward, P.A. Welling, T.J. Watnick, and B.D. Humphreys. 2022. Defining cellular complexity in human autosomal dominant polycystic kidney disease by multimodal single cell analysis. Nature Communications 13: 6497.
Muto, Y., P.C. Wilson, N. Ledru, H. Wu, H. Dimke, S.S. Waikar, and B.D. Humphreys. 2021. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nature Communications 12: 2190.
Doran, A.C., A. Yurdagul, and I. Tabas. 2020. Efferocytosis in health and disease. Nature Reviews Immunology 20: 254–267.
Fabregat, A., S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie, P. Garapati, R. Haw, B. Jassal, F. Korninger, B. May, M. Milacic, C.D. Roca, K. Rothfels, C. Sevilla, V. Shamovsky, S. Shorser, T. Varusai, G. Viteri, J. Weiser, G. Wu, L. Stein, H. Hermjakob, and P. D’Eustachio. 2018. The reactome pathway knowledgebase. Nucleic Acids Research 46: D649–D655.
Chin, C.-H., S.-H. Chen, H.-H. Wu, C.-W. Ho, M.-T. Ko, and C.-Y. Lin. 2014. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 8 (Suppl 4): S11.
Tang, S.C.W., and W.H. Yiu. 2020. Innate immunity in diabetic kidney disease. Nature Reviews. Nephrology 16: 206–222.
Ma, T., X. Li, Y. Zhu, S. Yu, T. Liu, X. Zhang, D. Chen, S. Du, T. Chen, S. Chen, Y. Xu, and Q. Fan. 2022. Excessive activation of notch signaling in macrophages promote kidney inflammation, fibrosis, and necroptosis. Frontiers in Immunology 13: 835879.
Li, Q., J. Liao, W. Chen, K. Zhang, H. Li, F. Ma, H. Zhang, Q. Han, J. Guo, Y. Li, L. Hu, J. Pan, and Z. Tang. 2022. NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway. Free Radical Biology & Medicine 187: 158–170.
Dias, C.G., L. Venkataswamy, and S. Balakrishna. 2022. Diabetic nephropathy patients show hyper-responsiveness to N6-carboxymethyllysine. Brazilian Journal of Medical and Biological Research 55: e11984.
Song, Y., F. Guo, Y.-Y. Zhao, X.-J. Ma, L.-N. Wu, J.-F. Yu, H.-F. Ji, M.-W. Shao, F.-J. Huang, L. Zhao, X.-J. Fan, Y.-N. Xu, Q.-Z. Wang, and G.-J. Qin. 2023. Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Cell Proliferation 56: e13349.
Barutta, F., S. Bellini, S. Kimura, K. Hase, B. Corbetta, A. Corbelli, F. Fiordaliso, S. Bruno, L. Biancone, A. Barreca, M.G. Papotti, E. Hirsh, M. Martini, R. Gambino, M. Durazzo, H. Ohno, and G. Gruden. 2023. Protective effect of the tunneling nanotube-TNFAIP2/M-sec system on podocyte autophagy in diabetic nephropathy. Autophagy 19: 505–524.
Maschalidi, S., P. Mehrotra, B.N. Keçeli, H.K.L. De Cleene, K. Lecomte, R. Van der Cruyssen, P. Janssen, J. Pinney, G. van Loo, D. Elewaut, A. Massie, E. Hoste, and K.S. Ravichandran. 2022. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606: 776–784.
Geng, L., J. Zhao, Y. Deng, I. Molano, X. Xu, L. Xu, P. Ruiz, Q. Li, X. Feng, M. Zhang, W. Tan, D.L. Kamen, S.-C. Bae, G.S. Gilkeson, L. Sun, and B.P. Tsao. 2022. Human SLE variant NCF1-R90H promotes kidney damage and murine lupus through enhanced Tfh2 responses induced by defective efferocytosis of macrophages. Annals of the Rheumatic Diseases 81: 255–267.
Chen, Z.Z., L. Johnson, U. Trahtemberg, A. Baker, S. Huq, J. Dufresne, P. Bowden, M. Miao, J.-A. Ho, C.-C. Hsu, C.C. Dos Santos, and J.G. Marshall. 2023. Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients. Clinical Proteomics 20: 17.
Brustovetsky, N.N., Z.G. Amerkhanov, E. Popova, and A.A. Konstantinov. 1990. Reversible inhibition of electron transfer in the ubiquinol: cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels. FEBS Letters 263: 73–76.
Lv, Z., M. Hu, M. Fan, X. Li, J. Lin, J. Zhen, Z. Wang, H. Jin, and R. Wang. 2018. Podocyte-specific Rac1 deficiency ameliorates podocyte damage and proteinuria in STZ-induced diabetic nephropathy in mice. Cell Death & Disease 9: 342.
Ying, C., Z. Zhou, J. Dai, M. Wang, J. Xiang, D. Sun, and X. Zhou. 2022. Activation of the NLRP3 inflammasome by RAC1 mediates a new mechanism in diabetic nephropathy. Inflammation Research 71: 191–204.
Tang, J., Y. Jin, F. Jia, T. Lv, A. Manaenko, L.-F. Zhang, Z. Zhang, X. Qi, Y. Xue, B. Zhao, X. Zhang, J.H. Zhang, J. Lu, and Q. Hu. 2022. Gas6 promotes microglia efferocytosis and suppresses inflammation through activating Axl/Rac1 signaling in subarachnoid hemorrhage mice. Translational Stroke Research 14: 955–969.
Proto, J.D., A.C. Doran, G. Gusarova, A. Yurdagul, E. Sozen, M. Subramanian, M.N. Islam, C.C. Rymond, J. Du, J. Hook, G. Kuriakose, J. Bhattacharya, and I. Tabas. 2018. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49 (4): 666–677.
Funding
This work was supported by grants from the National Natural Science Foundation of China (81974110, 82170839) to Qin, from the National Natural Science Foundation of China (82300930) to Song, and Hubei Chen Xiaoping Science and Technology Development Foundation (CXPJJH122012-023) to Song.
Author information
Authors and Affiliations
Contributions
YS and YL: conceptualization, methodology, software, investigation, formal analysis, writing – original draft. FG: resources, supervision, data curation, writing – original draft. LZ: visualization, investigation, validation. GQ: conceptualization, funding acquisition, resources, supervision, writing – review and editing.
Corresponding author
Ethics declarations
Competing Interests
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Song, Y., Liu, Y., Guo, F. et al. Single-Cell RNA Sequencing Reveals RAC1 Involvement in Macrophages Efferocytosis in Diabetic Kidney Disease. Inflammation 47, 753–770 (2024). https://doi.org/10.1007/s10753-023-01942-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10753-023-01942-y