Skip to main content
Log in

Upregulation of UHRF1 Promotes PINK1-mediated Mitophagy to Alleviates Ferroptosis in Diabetic Nephropathy

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is a common diabetic complication. Studies show that mitophagy inhibition induced-ferroptosis plays a crucial role in DN progression. UHRF1 is associated with mitophagy and is highly expression in DN patients, however, the effect of UHRF1 on DN is still unclear. Thus, in this study, we aimed to investigate whether UHRF1 involves DN development by the mitophagy/ferroptosis pathway. We overexpressed UHRF1 using an adeno-associated virus 9 (AAV9) system in high-fat diet/streptozotocin-induced diabetic mice. Renal function index, pathological changes, mitophagy factors, and ferroptosis factors were detected in vivo. High-glucose cultured human renal proximal tubular (HK-2) cells were used as in vitro models to investigate the mechanism of UHRF1 in DN. We found that diabetic mice exhibited kidney damage, which was alleviated by UHRF1 overexpression. UHRF1 overexpression promoted PINK1-mediated mitophagy and inhibited the expression of thioredoxin interacting protein (TXNIP), a factor associated with mitochondrial dysfunction. Additionally, UHRF1 overexpression alleviated lipid peroxidation and free iron accumulation, and upregulated the expression of GPX4 and Slc7a11, indicating the inhibition effect of UHRF1 overexpression on ferroptosis. We further investigated the mechanism of UHRF1 in the mitophagy/ferroptosis pathway in DN. We found that UHRF1 overexpression promoted PINK1-mediated mitophagy via inhibiting TXNIP expression, thus suppressing ferroptosis. These findings confirmed that upregulation of UHRF1 expression alleviates DN, indicating that UHRF1 has a reno-protective effect against DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

DATA AVAILABILITY

The data in this study is available from the corresponding author upon reasonable request.

References

  1. Srivastava, S.P., H. Zhou, O. Setia, B. Liu, K. Kanasaki, et al. 2021. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nature Communications 12 (1): 2368. https://doi.org/10.1038/s41467-021-22617-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang, C., M.J. Livingston, Z. Liu, and Z. Dong. 2020. Autophagy in kidney homeostasis and disease. Nature Reviews Nephrology 16 (9): 489–508. https://doi.org/10.1038/s41581-020-0309-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, Y., R. Bi, F. Quan, Q. Cao, Y. Lin, et al. 2020. Ferroptosis involves in renal tubular cell death in diabetic nephropathy. European Journal of Pharmacology 888: 173574. https://doi.org/10.1016/j.ejphar.2020.173574.

    Article  CAS  PubMed  Google Scholar 

  4. Yao, W., H. Liao, M. Pang, L. Pan, Y. Guan, et al. 2022. Inhibition of the NADPH oxidase pathway reduces ferroptosis during septic renal injury in diabetic mice. Oxidative Medicine and Cellular Longevity 2022: 1193734. https://doi.org/10.1155/2022/1193734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, Y., T. Li, Z. Li, N. Liu, Y. Yan, et al. 2020. Role of mitophagy in cardiovascular disease. Aging and Disease 11 (2): 419–37. https://doi.org/10.14336/ad.2019.0518.

  6. Narendra, D., J.E. Walker, and R. Youle. 2012. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspectives in Biology 4 (11). https://doi.org/10.1101/cshperspect.a011338.

  7. Lin, Q., S. Li, H. Jin, H. Cai, X. Zhu, et al. 2023. Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. International Journal of Biological Sciences 19 (4): 1192–1210. https://doi.org/10.7150/ijbs.80775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cui, Y., X. Chen, J. Zhang, X. Sun, H. Liu, et al. 2016. Uhrf1 Controls iNKT Cell Survival and Differentiation through the Akt-mTOR Axis. Cell Reports 15 (2): 256–263. https://doi.org/10.1016/j.celrep.2016.03.016.

    Article  CAS  PubMed  Google Scholar 

  9. Elia, L., P. Kunderfranco, P. Carullo, M. Vacchiano, F.M. Farina, et al. 2018. UHRF1 epigenetically orchestrates smooth muscle cell plasticity in arterial disease. The Journal of Clinical Investigation 128 (6): 2473–2486. https://doi.org/10.1172/jci96121.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hsu, Y.H., H.H. Li, J.M. Sung, W.Y. Chen, Y.C. Hou, et al. 2017. Interleukin-20 targets podocytes and is upregulated in experimental murine diabetic nephropathy. Experimental & Molecular Medicine 49 (3): e310. https://doi.org/10.1038/emm.2016.169.

    Article  CAS  Google Scholar 

  11. Huang, C., Y. Zhang, D.J. Kelly, C.Y. Tan, A. Gill, et al. 2016. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Science and Reports 6: 29196. https://doi.org/10.1038/srep29196.

    Article  CAS  Google Scholar 

  12. Kim, M. J., H.J. Lee, M.Y. Choi, S.S. Kang, Y.S. Kim, et al. 2021. UHRF1 induces methylation of the TXNIP promoter and down-regulates gene expression in cervical cancer. Molecules and Cells 44 (3): 146–59. https://doi.org/10.14348/molcells.2021.0001.

  13. Jiao, D., Y. Huan, J. Zheng, M. Wei, G. Zheng, et al. 2019. UHRF1 promotes renal cell carcinoma progression through epigenetic regulation of TXNIP. Oncogene 38 (28): 5686–5699. https://doi.org/10.1038/s41388-019-0822-6.

    Article  CAS  PubMed  Google Scholar 

  14. Guo, Z., X. Wan, Y. Luo, F. Liang, S. Jiang, et al. 2023. The vicious circle of UHRF1 down-regulation and KEAP1/NRF2/HO-1 pathway impairment promotes oxidative stress-induced endothelial cell apoptosis in diabetes. Diabetic Medicine 40 (4): e15026. https://doi.org/10.1111/dme.15026.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, J.K., G. Kan, Y. Mao, Z. Wu, X. Tan, et al. 2020. UHRF1 downmodulation enhances antitumor effects of histone deacetylase inhibitors in retinoblastoma by augmenting oxidative stress-mediated apoptosis. Molecular Oncology 14 (2): 329–346. https://doi.org/10.1002/1878-0261.12607.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, R., Y. Zhou, T. Zhang, S. Wang, J. Wang, et al. 2023. The transcription factor HBP1 promotes ferroptosis in tumor cells by regulating the UHRF1-CDO1 axis. PLoS Biology 21 (7): e3001862. https://doi.org/10.1371/journal.pbio.3001862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peng, R., H. Liu, H. Peng, J. Zhou, H. Zha, et al. 2015. Promoter hypermethylation of let-7a-3 is relevant to its down-expression in diabetic nephropathy by targeting UHRF1. Gene 570 (1): 57–63. https://doi.org/10.1016/j.gene.2015.05.073.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Z., C. Wang, Y. Pan, X. Gao, and H. Chen. 2018. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food & Function 9 (1): 426–439. https://doi.org/10.1039/c7fo00983f.

    Article  CAS  Google Scholar 

  19. Lin, G., X. Liu, X. Yan, D. Liu, C. Yang, et al. 2018. Role of green macroalgae Enteromorpha prolifera polyphenols in the modulation of gene expression and intestinal microflora profiles in type 2 diabetic mice. International Journal of Molecular Sciences 20 (1). https://doi.org/10.3390/ijms20010025.

  20. Kumar, A., and R. Mittal. 2018. Mapping Txnip: Key connexions in progression of diabetic nephropathy. Pharmacological Reports 70 (3): 614–622. https://doi.org/10.1016/j.pharep.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  21. Mao, Y., J. Du, X. Chen, Mamun A. Al, L. Cao, et al. 2022. Maltol Promotes Mitophagy and Inhibits Oxidative Stress via the Nrf2/PINK1/Parkin Pathway after Spinal Cord Injury. Oxidative Medicine and Cellular Longevity 2022: 1337630. https://doi.org/10.1155/2022/1337630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang, D., X. Chen, R. Kang, and G. Kroemer. 2021. Ferroptosis: Molecular mechanisms and health implications. Cell Research 31 (2): 107–125. https://doi.org/10.1038/s41422-020-00441-1.

    Article  CAS  PubMed  Google Scholar 

  23. De Marinis, Y., M. Cai, P. Bompada, D. Atac, O. Kotova, et al. 2016. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney International 89 (2): 342–353. https://doi.org/10.1016/j.kint.2015.12.018.

    Article  CAS  PubMed  Google Scholar 

  24. Lu, C.C., Z.B. Hu, R. Wang, Z.H. Hong, J. Lu, et al. 2020. Gut microbiota dysbiosis-induced activation of the intrarenal renin-angiotensin system is involved in kidney injuries in rat diabetic nephropathy. Acta Pharmacologica Sinica 41 (8): 1111–1118. https://doi.org/10.1038/s41401-019-0326-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Y., Cai J., Tang C., Dong Z. 2020. Mitophagy in acute kidney injury and kidney repair. Cells 9(2). https://doi.org/10.3390/cells9020338.

  26. Saxena, S., A. Mathur, and P. Kakkar. 2019. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy. Journal of Cellular Physiology 234 (11): 19223–19236. https://doi.org/10.1002/jcp.28712.

    Article  CAS  PubMed  Google Scholar 

  27. Abu-Alainin, W., T. Gana, T. Liloglou, A. Olayanju, L.N. Barrera, et al. 2016. UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis. The Journal of Pathology 238 (3): 423–433. https://doi.org/10.1002/path.4665.

    Article  CAS  PubMed  Google Scholar 

  28. Su, C.J., Z. Shen, R.X. Cui, Y. Huang, D.L. Xu, et al. 2020. Thioredoxin-Interacting Protein (TXNIP) Regulates Parkin/PINK1-mediated Mitophagy in Dopaminergic Neurons Under High-glucose Conditions: Implications for Molecular Links Between Parkinson’s Disease and Diabetes. Neuroscience Bulletin 36 (4): 346–358. https://doi.org/10.1007/s12264-019-00459-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ivankovic, D., K.Y. Chau, A.H. Schapira, and M.E. Gegg. 2016. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. Journal of Neurochemistry 136 (2): 388–402. https://doi.org/10.1111/jnc.13412.

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura, T., I. Naguro, and H. Ichijo. 2019. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica et Biophysica Acta - General Subjects 1863 (9): 1398–1409. https://doi.org/10.1016/j.bbagen.2019.06.010.

    Article  CAS  PubMed  Google Scholar 

  31. Du, Y., R. Zhang, G. Zhang, H. Wu, S. Zhan, et al. 2022. Downregulation of ELAVL1 attenuates ferroptosis-induced neuronal impairment in rats with cerebral ischemia/reperfusion via reducing DNMT3B-dependent PINK1 methylation. Metabolic Brain Disease 37 (8): 2763–2775. https://doi.org/10.1007/s11011-022-01080-8.

    Article  CAS  PubMed  Google Scholar 

  32. Dixon, S.J., K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, et al. 2012. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149 (5): 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lei, P., T. Bai, and Y. Sun. 2019. Mechanisms of ferroptosis and relations with regulated cell death: a review. Frontiers in Physiology 10: 139. https://doi.org/10.3389/fphys.2019.00139.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Matsumoto, M., N. Sasaki, T. Tsujino, H. Akahori, Y. Naito, et al. 2013. Iron restriction prevents diabetic nephropathy in Otsuka Long-Evans Tokushima fatty rat. Renal Failure 35 (8): 1156–1162. https://doi.org/10.3109/0886022x.2013.819729.

    Article  CAS  PubMed  Google Scholar 

  35. Feng, H., and B.R. Stockwell. 2018. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biology 16 (5): e2006203. https://doi.org/10.1371/journal.pbio.2006203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Battaglia, A. M., R. Chirillo, I. Aversa, A. Sacco, F. Costanzo, et al. 2020. Ferroptosis and cancer: mitochondria meet the "iron maiden" cell death. Cells 9 (6). https://doi.org/10.3390/cells9061505.

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Grant No. 81570746 to G. Qin), the Medical Science and Technology Cooperation Project of Henan Province (Grant No. 2018020019 to H. Ji), the Medical Science and Technology Project of Henan Province (Grant No. 212102310196 to H. Ji).

Author information

Authors and Affiliations

Authors

Contributions

H. F. J. and G. J. Q. conceived the presented ideas. H. F. J., Y. Y. Z., X. J. M. and L. N. W. performed experiments. H. F. J., F. G., F. J. H., Y. S. and J. W. analyzed the data. H. F. J. and G. J. Q. drafted the paper. All authors have read and approved the final version of the paper.

Corresponding author

Correspondence to Guijun Qin.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SUPPLEMENTARY INFORMATION

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 457 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Zhao, Y., Ma, X. et al. Upregulation of UHRF1 Promotes PINK1-mediated Mitophagy to Alleviates Ferroptosis in Diabetic Nephropathy. Inflammation 47, 718–732 (2024). https://doi.org/10.1007/s10753-023-01940-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01940-0

KEY WORDS

Navigation