Skip to main content

Advertisement

Log in

The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1β and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1β, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1β and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Gu, J., A. Noe, P. Chandra, S. Al-Fayoumi, M. Ligueros-Saylan, R. Sarangapani, S. Maahs, G. Ksander, D.F. Rigel, A.Y. Jeng, T.H. Lin, W. Zheng, and W.P. Dole. 2010. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). Journal of Clinical Pharmacology 50 (4): 401–414. https://doi.org/10.1177/0091270009343932.

    Article  CAS  PubMed  Google Scholar 

  2. Ruilope, L.M., A. Dukat, M. Böhm, Y. Lacourcière. J. Gong, and M.P. Lefkowitz. 2010. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375 (9722): 1255–1266. https://doi.org/10.1016/S0140-6736(09)61966-8.

  3. McMurray, J.J., M. Packer, A.S. Desai, J. Gong, M.P. Lefkowitz, A.R. Rizkala, J.L. Rouleau, V.C. Shi, S.D. Solomon, K. Swedberg, PARADIGM-HF Investigators and Committees. 2014. Angiotensin-neprilysin inhibition versus enalapril in heart failure. The New England Journal of Medicine 371 (11): 993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  CAS  PubMed  Google Scholar 

  4. Solomon, S.D., M. Zile, B. Pieske, A. Voors, A. Shah, E. Kraigher-Krainer, V. Shi, T. Bransford, M. Takeuchi, J. Gong, M. Lefkowitz, M. Packer, and J.J. McMurray. 2012. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 80 (9851): 1387–1395. https://doi.org/10.1016/S0140-6736(12)61227-6.

  5. Zhang, R., X. Sun, Y. Li, W. He, H. Zhu, B. Liu, and A. Zhang. 2022. The efficacy and safety of Sacubitril/Valsartan in heart failure patients: A Review. Journal of Cardiovascular Pharmacology Therapeutics 27: 10742484211058681. https://doi.org/10.1177/10742484211058681.

  6. Fernández-Ruiz, I. 2017. Diabetes: Sacubitril/Valsartan improves glycaemic control. Nature Reviews Cardiology 14 (5): 252. https://doi.org/10.1038/nrcardio.2017.44.

    Article  PubMed  Google Scholar 

  7. Haynes, R., P.K. Judge, N. Staplin, W.G. Herrington, B.C. Storey, A. Bethel, L. Bowman, N. Brunskill, P. Cockwell, M. Hill, P.A. Kalra, J.J.V. McMurray, M. Taal, D.C. Wheeler, M.J. Landray, and C. Baigent. 2018. Effects of Sacubitril/Valsartan versus Irbesartan in patients with chronic kidney disease. Circulation 138 (15): 1505–1514. https://doi.org/10.1161/CIRCULATIONAHA.118.034818.

    Article  CAS  PubMed  Google Scholar 

  8. Belali, O.M., M.M. Ahmed, M. Mohany, T.M. Belali, M.M. Alotaibi, A. Al-Hoshani, and S.S. Al-Rejaie. 2022. LCZ696 protects against diabetic cardiomyopathy-induced myocardial inflammation, ER stress, and apoptosis through inhibiting AGEs/NF-κB and PERK/CHOP signaling pathways. International Journal of Molecular Sciences 23 (3): 1288. https://doi.org/10.3390/ijms23031288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ye, S., L. Su, P. Shan, B. Ye, S. Wu, G. Liang, and  W. Huang. 2021. LCZ696 attenuated doxorubicin-induced chronic cardiomyopathy through the TLR2-MyD88 complex formation. Frontiers in Cell and Developmental Biology 9: 654051. https://doi.org/10.3389/fcell.2021.654051.

  10. Alqahtani, F., M. Mohany, A.F. Alasmari, A.Z. Alanazi, O.M. Belali, M.M. Ahmed, and S.S. Al-Rejaie. 2020. Angiotensin II receptor neprilysin inhibitor (LCZ696) compared to Valsartan attenuates hepatotoxicity in STZ-induced hyperglycemic rats. International Journal of Medicine and Medical Sciences 17 (18): 3098–3106. https://doi.org/10.7150/ijms.49373.

  11. Acanfora, D., M. Ciccone, P. Scicchitano, C. Acanfora, and G. Casucci. 2020. Neprilysin inhibitor-angiotensin II receptor blocker combination (sacubitril/valsartan): rationale for adoption in SARS-CoV-2 patients. The European Heart Journal - Cardiovascular Pharmacotherapy 6 (3): 135–136. https://doi.org/10.1093/ehjcvp/pvaa028.

  12. Vitiello A., R. La Porta, and F. Ferrara. 2021. Scientific hypothesis and rational pharmacological for the use of sacubitril/valsartan in cardiac damage caused by COVID-19. Medical Hypotheses 147: 110486. https://doi.org/10.1016/j.mehy.2021.110486.

  13. Moretti, J., and J.M. Blander. 2021. Increasing complexity of NLRP3 inflammasome regulation. Journal of Leukocyte Biology 109 (3): 561–571. https://doi.org/10.1002/JLB.3MR0520-104RR.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, Q.L., H.R. Yin, Q.Y. He, and Y. Wang. 2021. Targeting the NLRP3 inflammasome as new therapeutic avenue for inflammatory bowel disease. Biomed Pharmacother 138: 111442. https://doi.org/10.1016/j.biopha.2021.111442.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi, M. 2022. NLRP3 inflammasome as a key driver of vascular disease. Cardiovascular Research 118 (2): 372–385. https://doi.org/10.1093/cvr/cvab010.

  16. Ding, S., S. Xu, Y. Ma, G. Liu, H. Jang, and J. Fang. 2019. Modulatory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules 9 (12): 850. https://doi.org/10.3390/biom9120850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Komada, T., and D.A. Muruve. 2019. The role of inflammasomes in kidney disease. Nature Reviews Nephrology 15 (8): 501–520. https://doi.org/10.1038/s41581-019-0158-z.

    Article  PubMed  Google Scholar 

  18. Szekanecz, Z., S. Szamosi, G.E. Kovács, E. Kocsis, and S. Benkő. 2019. The NLRP3 inflammasome - interleukin 1 pathway as a therapeutic target in gout. Archives of Biochemistry and Biophysics 670: 82–93. https://doi.org/10.1016/j.abb.2019.01.031.

  19. Sharma, B.R., and T.D. Kanneganti. NLRP3 inflammasome in cancer and metabolic diseases. Nature Immunology 22 (5): 550–559. https://doi.org/10.1038/s41590-021-00886-5.

  20. Potere, N., M.G. Del Buono, R. Caricchio, P.C. Cremer, A. Vecchié, E. Porreca, D. Dalla Gasperina, F. Dentali, A. Abbate, and A. Bonaventura. 2022. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. EBioMedicine 85: 104299. https://doi.org/10.1016/j.ebiom.2022.104299.

  21. Zhang, X., A. Xu, J. Lv, Q. Zhang, Y. Ran, C. Wei, and J. Wu. 2020. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. European Journal of Medicinal Chemistry 185: 111822. https://doi.org/10.1016/j.ejmech.2019.111822.

  22. Zahid, A., B. Li, AJK. Kombe, T. Jin, and J. Tao. 2019. Pharmacological Inhibitors of the NLRP3 Inflammasome. Frontiers in Immunology https://doi.org/10.3389/fimmu.2019.02538.

  23. Lin, W.Y., L.H. Li, Y.Y. Hsiao, W.T. Wong, H.W. Chiu, H.T. Hsu, Y.J. Peng, C.L. Ho, O.V. Chernikov, S.M. Cheng, S.P. Yang, and K.F. Hua. 2022. Repositioning of the angiotensin II receptor antagonist Candesartan as an anti-inflammatory agent with NLRP3 inflammasome inhibitory activity. Frontiers in Immunology 13: 870627. https://doi.org/10.3389/fimmu.2022.870627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wong, W.T., L.H. Li, Y.K. Rao, S.P. Yang, S.M. Cheng, W.Y. Lin, C.C. Cheng, A. Chen, and K.F. Hua. 2018. Repositioning of the β-blocker Carvedilol as a novel autophagy inducer that inhibits the NLRP3 inflammasome. Frontiers in Immunology 9: 1920. https://doi.org/10.3389/fimmu.2018.01920.

  25. Li, X., Q. Zhu, Q. Wang, Q. Zhang, Y. Zheng, L. Wang, and Q. Jin. 2020. Protection of Sacubitril/Valsartan against Pathological Cardiac Remodeling by Inhibiting the NLRP3 Inflammasome after Relief of Pressure Overload in Mice. Cardiovascular Drugs and Therapy 34 (5): 629–640. https://doi.org/10.1007/s10557-020-06995-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen, J., Z. Fan, G. Sun, and G. Qi. 2021. Sacubitril/valsartan (LCZ696) reduces myocardial injury following myocardial infarction by inhibiting NLRP3‑induced pyroptosis via the TAK1/JNK signaling pathway. Molecular Medicine Reports 24 (3): 676. https://doi.org/10.3892/mmr.2021.12315.

  27. Liao, P.C., L.K. Chao, J.C. Chou, W.C. Dong, C.N. Lin, C.Y. Lin, A. Chen, S.M. Ka, C.L. Ho, and K.F. Hua. 2013. Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1β secretion. Inflammation Research 62 (1): 89–96. https://doi.org/10.1007/s00011-012-0555-2.

    Article  CAS  PubMed  Google Scholar 

  28. Li, L.H., J.S. Lin, H.W. Chiu, W.Y. Lin, T.C. Ju, F.H. Chen, O.V. Chernikov, M.L. Liu, J.C. Chang, C.H. Hsu, A. Chen, S.M. Ka, H.W. Gao, and K.F. Hua. 2019. Mechanistic Insight Into the Activation of the NLRP3 Inflammasome by Neisseria gonorrhoeae in Macrophages. Frontiers in Immunology 10: 1815. https://doi.org/10.3389/fimmu.2019.01815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsai W.C., WT. Wong, H.T. Hsu, Y.H. Cheng, Y.H. Yu, W.J. Chen, C.L. Ho, H.C. Hsu, K.F. Hua. 2022. Surfactin Containing Bacillus licheniformis-Fermented Products Alleviate Dextran Sulfate Sodium-Induced Colitis by Inhibiting Colonic Inflammation and the NLRP3 Inflammasome in Mice. Animals (Basel) 12 (24): 3456. https://doi.org/10.3390/ani12243456.

  30. Yang, N., Z. Xia, N. Shao, B. Li, L. Xue, Y. Peng, F. Zhi, and Y. Yang. 2017. Carnosic acid prevents dextran sulfate sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 pathway. Scientific Reports 7 (1): 11036. https://doi.org/10.1038/s41598-017-11408-5.

  31. Pan, Y., W. Cai, J. Huang, A. Cheng, M. Wang, Z. Yin, and R. Jia. 2022. Pyroptosis in development, inflammation and disease. Frontiers in Immunology 13: 991044. https://doi.org/10.3389/fimmu.2022.991044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiu, Y., Y. Huang, M. Chen, Y. Yang, X. Li, and W. Zhang. 2022. Mitochondrial DNA in NLRP3 inflammasome activation. International Immunopharmacology 108: 108719. https://doi.org/10.1016/j.intimp.2022.108719.

  33. Biasizzo, M., and N. Kopitar-Jerala. 2020. Interplay Between NLRP3 Inflammasome and Autophagy. Frontiers in Immunology 11: 591803. https://doi.org/10.3389/fimmu.2020.591803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tao, Y., N. Wang, T. Qiu, and X. Sun. 2020. The Role of Autophagy and NLRP3 Inflammasome in Liver Fibrosis. BioMed Research International 7269150. https://doi.org/10.1155/2020/7269150.

  35. Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, P.S. Liu, J.R. Lill, H. Li, J. Wu, S. Kummerfeld, J. Zhang, W.P. Lee, S.J. Snipas, G.S. Salvesen, L.X. Morris, L. Fitzgerald, Y. Zhang, E.M. Bertram, C.C. Goodnow, and V.M. Dixit. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526 (7575): 666–671. https://doi.org/10.1038/nature15541.

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Gabrielli, E., E. Pericolini, E. Luciano, S. Sabbatini, E. Roselletti, S. Perito, L. Kasper, B. Hube, and A. Vecchiarelli. 2015. Induction of caspase-11 by aspartyl proteinases of Candida albicans and implication in promoting inflammatory response. Infection and Immunity 83 (5): 1940–1948. https://doi.org/10.1128/IAI.02895-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, Y., X. Zhang, Y. Guo, X. Li, G. Guo, Z. Niu, and J. Zhang. 2021. Type 1 interferon aggravates lipopolysaccharide-induced sepsis through upregulating Caspase-11 and Gasdermin D. Journal of Physiology and Biochemistry 77 (1): 85–92. https://doi.org/10.1007/s13105-021-00785-1.

    Article  CAS  PubMed  Google Scholar 

  38. Burdette, B.E., A.N. Esparza, H. Zhu, and S. Wang. 2021. Gasdermin D in pyroptosis. Acta Pharm Sin B 11 (9): 2768–2782. https://doi.org/10.1016/j.apsb.2021.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moehlman, A.T., and R.J. Youle. 2020. Mitochondrial Quality Control and Restraining Innate Immunity. The Annual Review of Cell and Developmental Biology 36: 265–289. https://doi.org/10.1146/annurev-cellbio-021820-101354.

    Article  CAS  PubMed  Google Scholar 

  40. Xian, H., K. Watari, E. Sanchez-Lopez, J. Offenberger, J. Onyuru, H. Sampath, W. Ying, H.M. Hoffman, G.S. Shadel, and M. Karin. 2022. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55 (8): 1370–1385.e8. https://doi.org/10.1016/j.immuni.2022.06.007.

  41. Zhong, Z., S. Liang, E. Sanchez-Lopez, F. He, S. Shalapour,  XJ. Lin, J. Wong, S. Ding, E. Seki,  B. Schnabl, AL. Hevener, HB. Greenberg, T. Kisseleva, and M. Karin. 2018. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560(7717):198–203. https://doi.org/10.1038/s41586-018-0372-z.

  42. Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469 (7329): 221–225. https://doi.org/10.1038/nature09663.

  43. Baroja-Mazo, A., F. Martín-Sánchez, A.I. Gomez, C.M. Martínez, J. Amores-Iniesta, V. Compan, M. Barberà-Cremades, J. Yagüe, E. Ruiz-Ortiz, J. Antón, S. Buján, I. Couillin, D. Brough, J.I. Arostegui, and P. Pelegrín. 2014. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology 15 (8): 738–748. https://doi.org/10.1038/ni.2919.

  44. Tan, H.W.S., G. Lu, H. Dong, Y.L. Cho, A. Natalia, L. Wang, C. Chan, D. Kappei, S.C. Taneja Ling, H. Shao, S.Y. Tsai, WX. Ding, and H.M. Shen. 2022. A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery. Nature Communications 13 (1): 3720. https://doi.org/10.1038/s41467-022-31213-7.

  45. Puissant, A., N. Fenouille, and P. Auberger. 2012. When autophagy meets cancer through p62/SQSTM1. American Journal of Cancer Research 2 (4): 397–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang, H., X. Tang, Z. Guo, H. Cheng, X. Zheng, G. Chen, H. Huang, W. Wang, J. Gao, Y. Sheng, X. Fan, and L. Sun. 2021. AURKA facilitates the psoriasis-related inflammation by impeding autophagy-mediated AIM2 inflammasome suppression. Immunology Letters 240: 98–105. https://doi.org/10.1016/j.imlet.2021.10.004.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang, H., Y. Xie, J. Lu, H. Li, K. Zeng, Z. Hu, D. Wu, J. Yang, Z. Yao, H. Chen, X. Gong, and X. Yu. 2023. Pristimerin suppresses AIM2 inflammasome by modulating AIM2-PYCARD/ASC stability via selective autophagy to alleviate tendinopathy. Autophagy 1–18. https://doi.org/10.1080/15548627.2023.2249392.

  48. Hao, T., W. Fang, D. Xu, Q. Chen, Q. Liu, K. Cui, X. Cao, Y. Li, K. Mai, and Q. Ai. 2023. Phosphatidylethanolamine alleviates OX-LDL-induced macrophage inflammation by upregulating autophagy and inhibiting NLRP1 inflammasome activation. Free Radical Biology & Medicine 208: 402–417. https://doi.org/10.1016/j.freeradbiomed.2023.08.031.

    Article  CAS  Google Scholar 

  49. Jabir, M.S., G.M. Sulaiman, Z.J. Taqi, and D. Li. 2018. Iraqi propolis increases degradation of IL-1β and NLRC4 by autophagy following Pseudomonas aeruginosa infection. Microbes and Infection 20 (2): 89–100. https://doi.org/10.1016/j.micinf.2017.10.007.

    Article  CAS  PubMed  Google Scholar 

  50. Gao, A., Y. Wang, X. Gao, and W. Tian. 2021. LCZ696 ameliorates lipopolysaccharide-induced endothelial injury. Aging (Albany NY) 13 (7): 9582–270. https://doi.org/10.18632/aging.202692.

  51. Sho, T., and J. Xu. 2019. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnology and Applied Biochemistry 66(1):4–13. https://doi.org/10.1002/bab.1700.

  52. Hou, M., L. Lu, X. Wu, and H. Liu. 2022. LCZ696 Ameliorates Isoproterenol-Induced Acute Heart Failure in Rats by Activating the Nrf2 Signaling Pathway. Applied Bionics and Biomechanic 2022: 6077429. https://doi.org/10.1155/2022/6077429.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bruner, L.P., A.M. White, and S. Proksell. 2023. Inflammatory Bowel Disease. Primary Care 50 (3): 411–427. https://doi.org/10.1016/j.pop.2023.03.009.

    Article  PubMed  Google Scholar 

  54. Guan, Q. 2019. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. Journal of Immunology Research 2019: 7247238. https://doi.org/10.1155/2019/7247238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Song, Y., Y. Zhao, Y. Ma, Z. Wang, L. Rong, B. Wang, and N. Zhang. 2021. Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine & Growth Factor Reviews 60: 61–75. https://doi.org/10.1016/j.cytogfr.2021.03.003.

  56. Song, H., B. Liu, W. Huai, Z. Yu, W. Wang, J. Zhao, L. Han, G. Jiang, L. Zhang, C. Gao, and W. Zhao. 2016. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nature Communications 7: 13727. https://doi.org/10.1038/ncomms13727.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. An, Y., Z. Zhai, X. Wang, Y. Ding, L. He, L. Li, Q. Mo, C. Mu, R. Xie, T. Liu, W. Zhong, B. Wang, and H. Cao. 2023. Targeting Desulfovibrio vulgaris flagellin-induced NAIP/NLRC4 inflammasome activation in macrophages attenuates ulcerative colitis. Journal of Advanced Research 52: 219–232. https://doi.org/10.1016/j.jare.2023.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Irak, K., M. Bayram, S. Cifci, and G. Sener. 2021. Serum levels of NLRC4 and MCP-2/CCL8 in patients with active Crohn’s disease. PLoS ONE 16 (11): e0260034. https://doi.org/10.1371/journal.pone.0260034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carvalho, F.A., I. Nalbantoglu, J.D. Aitken, R. Uchiyama, Y. Su, G.H. Doho, M. Vijay-Kumar, and A.T. Gewirtz. 2012. Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunology 5 (3): 288–298. https://doi.org/10.1038/mi.2012.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ge, Q., L. Zhao, C. Liu, X. Ren, Y.H. Yu, C. Pan, and Z. Hu. 2020. LCZ696, an Angiotensin Receptor-Neprilysin Inhibitor, Improves Cardiac Hypertrophy and Fibrosis and Cardiac Lymphatic Remodeling in Transverse Aortic Constriction Model Mice. BioMed Research International 2020: 7256862. https://doi.org/10.1155/2020/7256862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, Y., Y. Fan, J. Li, M. Chen, A. Chen, D. Yang, X. Guan, and Y. Cao. 2021. Combination of LCZ696 and ACEI further improves heart failure and myocardial fibrosis after acute myocardial infarction in mice. Biomed Pharmacother 133: 110824. https://doi.org/10.1016/j.biopha.2020.110824.

    Article  CAS  PubMed  Google Scholar 

  62. Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426. https://doi.org/10.1016/s1097-2765(02)00599-3.

    Article  CAS  PubMed  Google Scholar 

  63. Mitchell, P.S., A. Sandstrom, and R.E. Vance. 2019. The NLRP1 inflammasome: New mechanistic insights and unresolved mysteries. Current Opinion in Immunology 60: 37–45. https://doi.org/10.1016/j.coi.2019.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hornung, V., A. Ablasser, M. Charrel-Dennis, F. Bauernfeind, G. Horvath, D.R. Caffrey, E. Latz, and K.A. Fitzgerald. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458 (7237): 514–518. https://doi.org/10.1038/nature07725.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Hong, Y., S.O. Lee, C. Oh, K. Kang, J. Ryoo, D. Kim, and K. Ahn. 2021. USP21 Deubiquitinase Regulates AIM2 Inflammasome Activation. The Journal of Immunology 207 (7): 1926–1936. https://doi.org/10.4049/jimmunol.2100449.

    Article  CAS  PubMed  Google Scholar 

  66. Dang, E.V., J.G. McDonald, D.W. Russell, and J.G. Cyster. 2017. Oxysterol Restraint of Cholesterol Synthesis Prevents AIM2 Inflammasome Activation. Cell 171 (5): 1057-1071.e11. https://doi.org/10.1016/j.cell.2017.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, P.H., Z.W. Ye, J.J. Deng, K.L. Siu, W.W. Gao, V. Chaudhary, Y. Cheng, S.Y. Fung, K.S. Yuen, T.H. Ho, C.P. Chan, Y. Zhang, K.H. Kok, W. Yang, C.P. Chan, and D.Y. Jin. 2018. Inhibition of AIM2 inflammasome activation by a novel transcript isoform of IFI16. EMBO Reports 19 (10): e45737. https://doi.org/10.15252/embr.201845737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao, Y., J. Yang, J. Shi, Y.N. Gong, Q. Lu, H. Xu, L. Liu, and F. Shao. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477 (7366): 596–600. https://doi.org/10.1038/nature10510.

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Karki, R., E. Lee, D. Place, P. Samir, J. Mavuluri, B.R. Sharma, A. Balakrishnan, R.K.S. Malireddi, R. Geiger, Q. Zhu, G. Neale, and T.D. Kanneganti. 2018. IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation. Cell 173 (4): 920-933.e13. https://doi.org/10.1016/j.cell.2018.02.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qu, Y., S. Misaghi, A. Izrael-Tomasevic, K. Newton, L.L. Gilmour, M. Lamkanfi, S. Louie, N. Kayagaki, J. Liu, L. Kömüves, J.E. Cupp, D. Arnott, D. Monack, and V.M. Dixit. 2012. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 90 (7421): 539–542. https://doi.org/10.1038/nature11429.

    Article  CAS  ADS  Google Scholar 

  71. Guan, C., X. Huang, J. Yue, H. Xiang, S. Shaheen, Z. Jiang, Y. Tao, J. Tu, Z. Liu, Y. Yao, W. Yang, Z. Hou, J. Liu, X.D. Yang, Q. Zou, B. Su, Z. Liu, J. Ni, J. Cheng, and X. Wu. 2021. SIRT3-mediated deacetylation of NLRC4 promotes inflammasome activation. Theranostics 11 (8): 3981–3995. https://doi.org/10.7150/thno.55573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, X., D. Li, W. Pi, B. Wang, S. Xu, L. Yu, L. Yao, Z. Sun, J. Jiang, and Y. Mi. 2022. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. International Immunopharmacology 113 (Pt A): 109379. https://doi.org/10.1016/j.intimp.2022.109379.

    Article  CAS  PubMed  Google Scholar 

  73. Peng, S., X.F. Lu, Y.D. Qi, J. Li, J. Xu, T.Y. Yuan, X.Y. Wu, Y. Ding, W.H. Li, G.Q. Zhou, Y. Wei, J. Li, S.W. Chen, and S.W. Liu. 2020. LCZ696 Ameliorates Oxidative Stress and Pressure Overload-Induced Pathological Cardiac Remodeling by Regulating the Sirt3/MnSOD Pathway. Oxidative Medicine and Cellular Longevity 2020: 9815039. https://doi.org/10.1155/2020/9815039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Downs, K.P., H. Nguyen, A. Dorfleutner, and C. Stehlik. 2020. An overview of the non-canonical inflammasome. Molecular Aspects of Medicine 76: 100924. https://doi.org/10.1016/j.mam.2020.100924.

    Article  CAS  PubMed  Google Scholar 

  75. Poelzl, A., C. Lassnig, S. Tangermann, D. Hromadová, U. Reichart, R. Gawish, K. Mueller, R. Moriggl, A. Linkermann, M. Glösmann, L. Kenner, M. Mueller, and B. Strobl. 2021. TYK2 licenses non-canonical inflammasome activation during endotoxemia. Cell Death and Differentiation 28 (2): 748–763. https://doi.org/10.1038/s41418-020-00621-x.

    Article  CAS  PubMed  Google Scholar 

  76. Chen, R., L. Zeng, S. Zhu, J. Liu, H.J. Zeh, G. Kroemer, H. Wang, T.R. Billiar, J. Jiang, D. Tang, and R. Kang. 2019. cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. Science Advances 5 (5): eaav5562. https://doi.org/10.1126/sciadv.aav5562.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Lee, G.S., N. Subramanian, A.I. Kim, I. Aksentijevich, R. Goldbach-Mansky, D.B. Sacks, R.N. Germain, D.L. Kastner, and J.J. Chae. 2012. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492 (7427): 123–127. https://doi.org/10.1038/nature11588.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Zhu, F., J. Ma, W. Li, Q. Liu, X. Qin, Y. Qian, C. Wang, Y. Zhang, Y. Li, D. Jiang, S. Wang, and P. Xia. 2023. The orphan receptor Nur77 binds cytoplasmic LPS to activate the non-canonical NLRP3 inflammasome. Immunity 56 (4): 753-767.e8. https://doi.org/10.1016/j.immuni.2023.03.003.

    Article  CAS  PubMed  Google Scholar 

  79. Liang, T., Y. Zhang, S. Wu, Q. Chen, and L. Wang. 2022. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Frontiers in Pharmacology 13: 845185. https://doi.org/10.3389/fphar.2022.845185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hersh, L.B., and D.W. Rodgers. 2008. Neprilysin and amyloid beta peptide degradation. Current Alzheimer Research 5 (2): 225–231. https://doi.org/10.2174/156720508783954703.

    Article  CAS  PubMed  Google Scholar 

  81. Galo, J., D. Celli, and R. Colombo. 2021. Effect of Sacubitril/Valsartan on Neurocognitive Function: Current Status and Future Directions. American Journal of Cardiovascular Drugs 21 (3): 267–270. https://doi.org/10.1007/s40256-020-00445-7.

    Article  CAS  PubMed  Google Scholar 

  82. Li, B., Y. Zhao, B. Yin, M. Helian, X. Wang, F. Chen, H. Zhang, H. Sun, B. Meng, and F. An. 2017. Safety of the neprilysin/renin-angiotensin system inhibitor LCZ696. Oncotarget 8 (47): 83323–83333. https://doi.org/10.18632/oncotarget.18312.

Download references

Funding

This research work is supported by the funding from the National Science and Technology Council, Taiwan (MOST 111-2628-B-197-001-MY3 and NSTC 112-2313-B-197-002 to K.-F. H.; MOST 111-2811-B-197-001 and NSTC 112-2811-B-197-002 to H.-W. C.), Tri-Service General Hospital, Taipei, Taiwan (TSGH-D-111048 to C.-H. W.; TSGH-C01-110015 to S.-M. C.; TSGH-C01-110016 to C.-C. C.) and Teh-Tzer Study Group for Human Medical Research Foundation (B1101034 to K.-F. H.).

Author information

Authors and Affiliations

Authors

Contributions

L.-H. L. and K.-F. H. is the guarantor of the article. L.-H. L. and K.-F. H. conceived and designed the study. H.-W. C., C.-H. W., W.-Y. L., W.-T. W. and W.-C. T. performed the experiments and analyzed the data. C.-L. H. assisted with some experiments. H.-T. H., S.-M. C., C.-C. C. and S.-P. Y. contributed to critical revision of the manuscript. H.-W. C., C.-H. W., L.-H. L. and K.-F. H. wrote and finished the manuscript. All authors participated in revising the manuscript and approved the final version.

Corresponding authors

Correspondence to Lan-Hui Li or Kuo-Feng Hua.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Declaration of Generative AI and AI-assisted Technologies in the Writing Process

During the preparation of this work the author(s) used ChatGPT in order to improve language. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, HW., Wu, CH., Lin, WY. et al. The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model. Inflammation (2024). https://doi.org/10.1007/s10753-023-01939-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-023-01939-7

KEY WORDS

Navigation