Skip to main content
Log in

Supplementing Glucose Intake Reverses the Inflammation Induced by a High-Fat Diet by Increasing the Expression of Siglec-E Ligands on Erythrocytes

  • Research
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Siglec-9/E is a cell surface receptor expressed on immune cells and can be activated by sialoglycan ligands to play an immunosuppressive role. Our previous study showed that increasing the expression of Siglec-9 (the human paralog of mouse Siglec-E) ligands maintains functionally quiescent immune cells in the bloodstream, but the biological effects of Siglec-9 ligand alteration on atherogenesis were not further explored. In the present study, we demonstrated that the atherosclerosis risk factor ox-LDL or a high-fat diet could decrease the expression of Siglec-9/E ligands on erythrocytes. Increased expression of Siglec-E ligands on erythrocytes caused by dietary supplementation with glucose (20% glucose) had anti-inflammatory effects, and the mechanism was associated with glucose intake. In high-fat diet-fed apoE−/− mice, glucose supplementation decreased the area of atherosclerotic lesions and peripheral inflammation. These data suggested that increased systemic inflammation is attenuated by increasing the expression of Siglec-9/E ligands on erythrocytes. Therefore, Siglec-9/E ligands might be valuable targets for atherosclerosis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The data of this study may be available on reasonable request to the corresponding author.

References

  1. Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology 13: 159–175. https://doi.org/10.1038/nri3399.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, M.G., H.D. Wang, X.Y. Zeng, P. Yin, J. Zhu, W.Q. Chen, X.H. Li, L.J. Wang, L.M. Wang, Y.N. Liu, J.M. Liu, M. Zhang, J.L. Qi, S.C. Yu, A. Afshin, E. Gakidou, S. Glenn, V.S. Krish, M.K. Miller-Petrie, et al. 2019. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet 394: 1145–1158. https://doi.org/10.1016/S0140-6736(19)30427-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Soehnlein, O. 2012. Multiple roles for neutrophils in atherosclerosis. Circulation Research 110: 875–888. https://doi.org/10.1161/CIRCRESAHA.111.257535.

    Article  CAS  PubMed  Google Scholar 

  4. Swirski, F.K., M.J. Pittet, M.F. Kircher, E. Aikawa, F.A. Jaffer, P. Libby, and R. Weissleder. 2006. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proceedings of the National Academy of Sciences 103: 10340–10345. https://doi.org/10.1073/pnas.0604260103.

    Article  ADS  CAS  Google Scholar 

  5. Tabas, I., and A.H. Lichtman. 2017. Monocyte-macrophages and T cells in atherosclerosis. Immunity 47: 621–634. https://doi.org/10.1016/j.immuni.2017.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duewell, P., H. Kono, K.J. Rayner, C.M. Sirois, G. Vladimer, F.G. Bauernfeind, G.S. Abela, L. Franchi, G. Nuñez, M. Schnurr, T. Espevik, E. Lien, K.A. Fitzgerald, K.L. Rock, K.J. Moore, S.D. Wright, V. Hornung, and E. Latz. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 1357–1361. https://doi.org/10.1038/nature08938.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. DiRenzo, D., G.K. Owens, and N.J. Leeper. 2017. “Attack of the clones”: Commonalities between cancer and atherosclerosis. Circulation Research 120: 624–626. https://doi.org/10.1161/CIRCRESAHA.116.310091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fredman, G., and I. Tabas. 2017. Boosting inflammation resolution in atherosclerosis: The next frontier for therapy. The American Journal of Pathology 187: 1211–1221. https://doi.org/10.1016/j.ajpath.2017.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Libby, P. 2017. Interleukin-1 beta as a target for atherosclerosis therapy: Biological basis of CANTOS and beyond. Journal of the American College of Cardiology 70: 2278–2289. https://doi.org/10.1016/j.jacc.2017.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, J.Q., G. Nicoll, C. Jones, and P.R. Crocker. 2000. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. The Journal of Biological Chemistry 275: 22121–22126. https://doi.org/10.1074/jbc.M002788200.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, Z., M. Maoui, L. Wu, D. Banville, and S. Shen. 2001. mSiglec-E, a novel mouse CD33-related siglec (sialic acid-binding immunoglobulin-like lectin) that recruits Src homology 2 (SH2)-domain-containing protein tyrosine phosphatases SHP-1 and SHP-2. The Biochemical Journal 353: 483–492. https://doi.org/10.1042/0264-6021:3530483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lizcano, A., I. Secundino, S. Döhrmann, R. Corriden, C. Rohena, S. Diaz, P. Ghosh, L.Q. Deng, V. Nizet, and A. Varki. 2017. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood 129: 3100–3110. https://doi.org/10.1182/blood-2016-11-751636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, H.M., Y. Zheng, Y.X. Zhang, J. Li, S.M. Fernandes, D.F. Zeng, X.H. Li, R.L. Schnaar, and Y. Jia. 2020. Immunosuppressive Siglec-E ligands on mouse aorta are up-regulated by LPS via NF-κB pathway. Biomedicine & Pharmacotherapy 122: 109760. https://doi.org/10.1016/j.biopha.2019.109760.

    Article  CAS  Google Scholar 

  14. Zhang, Y.X., Y. Zheng, J. Li, L. Nie, Y.J. Hu, F.J. Wang, H.M. Liu, S.M. Fernandes, Q.J. Zhong, X.H. Li, R.L. Schnaar, and Y. Jia. 2019. Immunoregulatory Siglec ligands are abundant in human and mouse aorta and are up-regulated by high glucose. Life Sciences 216: 189–199. https://doi.org/10.1016/j.lfs.2018.11.049.

    Article  CAS  PubMed  Google Scholar 

  15. Citro, A., A. Valle, E. Cantarelli, A. Mercalli, S. Pellegrin, D. Liberati, L. Daffonchio, O. Kastsiuchenka, P.A. Ruffini, M. Battaglia, M. Allegretti, and L. Piemonti. 2015. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice. Diabetes 64: 1329–1340. https://doi.org/10.2337/db14-0443.

    Article  CAS  PubMed  Google Scholar 

  16. Gautier, E.F., M. Leduc, S. Cochet, K. Bailly, C. Lacombe, N. Mohandas, F. Guillonneau, W.E. Nemer, and P. Mayeux. 2018. Absolute proteome quantification of highly purified populations of circulating reticulocytes and mature erythrocytes. Blood Advances 2: 2646–2657. https://doi.org/10.1182/bloodadvances.2018023515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakajima, K., S. Kitazume, T. Angata, R. Fujinawa, K. Ohtsubo, E. Miyoshi, and N. Taniguchi. 2010. Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC. Glycobiology 20: 865–871. https://doi.org/10.1093/glycob/cwq044.

    Article  CAS  PubMed  Google Scholar 

  18. Kochanowski, N., F. Blanchard, R. Cacan, F. Chirat, E. Guedon, A. Marc, and J.L. Goergen. 2006. Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC. Analytical Biochemistry 348: 243–251. https://doi.org/10.1016/j.ab.2005.10.027.

    Article  CAS  PubMed  Google Scholar 

  19. Libby, P. 2002. Inflammation in atherosclerosis. Nature 420: 868–874. https://doi.org/10.1038/nature01323.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Libby, P. 2012. Inflammation in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32: 2045–2051. https://doi.org/10.1161/ATVBAHA.108.179705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaetano, G. 2001. Low-dose aspirin and vitamin E in people at cardiovascular risk: A randomised trial in general practice. Lancet 357: 89–95. https://doi.org/10.1016/s0140-6736(00)03539-x.

    Article  PubMed  Google Scholar 

  22. Everett, B.M., A.D. Pradhan, D.H. Solomon, N. Paynter, J. Macfadyen, E. Zaharris, M. Gupta, M. Clearfield, P. Libby, A. Hasan, R.J. Glynn, and P.M. Ridker. 2013. Rationale and design of the cardiovascular inflammation reduction trial: A test of the inflammatory hypothesis of atherothrombosis. American Heart Journal 166: 199–207. https://doi.org/10.1016/j.ahj.2013.03.018.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Raber, I., C.P. McCarthy, M. Vaduganathan, D.L. Bhatt, D.A. Wood, J. Cleland, R. Blumenthal, and J.W. McEvoy. 2019. The rise and fall of aspirin in the primary prevention of cardiovascular disease. Lancet 393: 2155–2167. https://doi.org/10.1016/S0140-6736(19)30541-0.

    Article  PubMed  Google Scholar 

  24. Gaziano, J.M., C. Broton, R. Coppolecchia, C. Cricelli, H. Darius, P.B. Gorelick, G. Howard, T.A. Pearson, P.M. Rothwell, L.M. Ruilope, M. Tendera, and G. Tognoni. 2018. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): A randomised, double-blind, placebo-controlled trial. Lancet 392: 1036–1046. https://doi.org/10.1016/S0140-6736(18)31924-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, Y., H.M. Liu, Y.X. Zhang, J. Li, C.P. Wang, L. Zhou, Y. Jia, and X.H. Li. 2017. Synthesis and biological evaluation of ginsenoside compound K derivatives as a novel class of LXRα activator. Molecules 22: 1232. https://doi.org/10.3390/molecules22071232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capodanno, D., and D.J. Angiolillo. 2018. Canakinumab for secondary prevention of atherosclerotic disease. Expert Opinion on Biological Therapy 18: 215–220. https://doi.org/10.1080/14712598.2018.1420776.

    Article  CAS  PubMed  Google Scholar 

  27. Kawanishi, K., C. Dhar, R. Do, N. Varki, P. Gordts, and A. Varki. 2019. Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proceedings of the National Academy of Sciences 116: 16036–16045. https://doi.org/10.1073/pnas.1902902116.

    Article  ADS  CAS  Google Scholar 

  28. Zakiev, E.R., I.A. Sobenin, V.N. Sukhorukov, V.A. Myasoedova, E.A. Ivanova, and A.N. Orekhov. Carbohydrate composition of circulating multiple-modified low-density lipoprotein. Vascular Health and Risk Management 12: 379–385. https://doi.org/10.2147/VHRM.S112948.

  29. Zhang, L., T.T. Wei, Y. Li, J. Li, Y. Fan, F.Q. Huang, Y.Y. Cai, G.X. Ma, J.F. Liu, Q.Q. Chen, S.L. Wang, H.L. Li, R.N. Alolga, B.L. Liu, D.S. Zhao, J.H. Shen, X.M. Wang, W. Zhu, P. Li, and L.W. Qi. 2018. Functional metabolomics characterizes a key role for N-acetylneuraminic acid in coronary artery diseases. Circulation 137: 1374–1390. https://doi.org/10.1161/CIRCULATIONAHA.117.031139.

    Article  CAS  PubMed  Google Scholar 

  30. Lübbers, J., E. Rodríguez, and Y. Kooyk. 2018. Modulation of immune tolerance via Siglec-sialic acid interactions. Frontiers in Immunology 9: 2807. https://doi.org/10.3389/fimmu.2018.02807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gruber, S., T. Hendrikx, D. Tsiantoulas, M.O. Kozma, L. Göderle, Z. Mallat, J.L. Witztum, R.S. Sverdlov, L. Nitschke, and C.J. Binder. 2016. Sialic acid-binding immunoglobulin-like lectin G promotes atherosclerosis and liver inflammation by suppressing the protective functions of B-1 cells. Cell Reports 14: 2348–2361. https://doi.org/10.1016/j.celrep.2016.02.027.

    Article  CAS  PubMed  Google Scholar 

  32. Schleimer, R.P., R.L. Schnaar, and B.S. Bochner. 2016. Regulation of airway inflammation by Siglec-8 and Siglec-9 sialoglycan ligand expression. Current Opinion in Allergy and Clinical Immunology 16: 24–30. https://doi.org/10.1097/ACI.0000000000000234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsu, Y.W., F.F. Hsu, M.T. Chiang, D.L. Tsai, F.A. Li, T. Angata, P.R. Crocker, and L.Y. Chau. 2021. Siglec-E retards atherosclerosis by inhibiting CD36-mediated foam cell formation. Journal of Biomedical Science 28: 5. https://doi.org/10.1186/s12929-020-00698-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kiser, Z.M., A. Lizcano, J. Nguyen, G.L. Becker, J.D. Belcher, A.P. Varki, and G.M. Vercellotti. 2020. Decreased erythrocyte binding of Siglec-9 increases neutrophil activation in sickle cell disease. Blood Cells, Molecules & Diseases 81: 102399. https://doi.org/10.1016/j.bcmd.2019.102399.

    Article  CAS  Google Scholar 

  35. Biadgo, B., M. Melku, S.M. Abebe, and M. Abebe. 2016. Hematological indices and their correlation with fasting blood glucose level and anthropometric measurements in type 2 diabetes mellitus patients in Gondar, Northwest Ethiopia. Diabetes Metab Syndr Obes 9: 91–99. https://doi.org/10.2147/DMSO.S97563.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Su, B.Y., C.F. Tian, B.L. Gao, Y.H. Tong, X.H. Zhao, and Y. Zheng. 2016. Correlation of the leucocyte count with traditional and non-traditional components of metabolic syndrome. Postgraduate Medicine 128: 805–809. https://doi.org/10.1080/00325481.2016.1243980.

    Article  PubMed  Google Scholar 

  37. Zhou, J.W., J.H. Wu, J.T. Zhang, T. Xu, H. Zhang, Y.H. Zhang, and S.Y. Zhang. 2015. Association of stroke clinical outcomes with coexistence of hyperglycemia and biomarkers of inflammation. Journal of Stroke and Cerebrovascular Diseases 24: 1250–1255. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.01.028.

    Article  PubMed  Google Scholar 

  38. Zhang, D.F., W.W. Jin, R.Q. Wu, J. Li, S.A. Park, E. Tu, P. Zanvit, J.J. Xu, O.S. Liu, A. Cain, and W.J. Chen. 2019. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51: 671–681. https://doi.org/10.1016/j.immuni.2019.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bornfeldt, K.E. 2016. Does elevated glucose promote atherosclerosis? Pros and cons. Circulation Research 119: 190–193. https://doi.org/10.1161/CIRCRESAHA.116.308873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patras, K.A., A. Coady, J. Olson, S.R. Ali, S.P. RamachandraRao, S. Kumar, A. Varki, and V. Nizet. 2017. Tamm-Horsfall glycoprotein engages human Siglec-9 to modulate neutrophil activation in the urinary tract. Immunology and Cell Biology 95: 960–965. https://doi.org/10.1038/icb.2017.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jia, Y., H.F. Yu, S.M. Fernandes, Y.D. Wei, A.G. Gil, M.G. Motari, K. Vajn, W.W. Stevens, A.T. Peters, B.S. Bochner, R.C. Kern, R.P. Schleimer, and R.L. Schnaar. 2016. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells. Current Opinion in Allergy and Clinical Immunology 16: 24–30. https://doi.org/10.1097/ACI.0000000000000234.

    Article  CAS  Google Scholar 

  42. Pernow, J., A. Mahdi, J. Yang, and Z. Zhou. 2019. Red blood cell dysfunction: A new player in cardiovascular disease. Cardiovascular Research 115: 1596–1605. https://doi.org/10.1093/cvr/cvz156.

    Article  CAS  PubMed  Google Scholar 

  43. Sprague, R.S., and M.L. Ellsworth. 2012. Erythrocyte-derived ATP and perfusion distribution: Role of intracellular and intercellular communication. Microcirculation 19: 430–439. https://doi.org/10.1111/j.1549-8719.2011.00158.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sikora, J., S.N. Orlov, K. Furuya, and R. Grygorczyk. 2014. Hemolysis is a primary ATP-release mechanism in human erythrocytes. Blood 124: 2150–2157. https://doi.org/10.1182/blood-2014-05-572024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salgado, M.T., Z.L. Cao, E. Nagababu, J.G. Mohanty, and J.M. Rifkind. 2015. Red blood cell membrane-facilitated release of nitrite-derived nitric oxide bioactivity. Biochemistry 54: 6712–6723. https://doi.org/10.1021/acs.biochem.5b00643.

    Article  CAS  PubMed  Google Scholar 

  46. Diederich, L., T. Suvorava, R. Sansone, T.C.S. Keller 4th, F. Barbarino, T.R. Sutton, C.M. Kramer, W. Lückstädt, B.E. Isakson, H. Gohlke, M. Feelisch, M. Kelm, and M.M. Cortese-Krott. 2018. On the effects of reactive oxygen species and nitric oxide on red blood cell deformability. Frontiers in Physiology 9: 332. https://doi.org/10.3389/fphys.2018.00332.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mohanty, J.G., E. Nagababu, and J.M. Rifkind. 2014. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Frontiers in Physiology 5: 84. https://doi.org/10.3389/fphys.2014.00084.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou, Z., A. Mahdi, Y. Tratsiakovich, S. Zahorán, O. Kövamees, F. Nordin, A.E. Uribe Gonzalez, M. Alvarsson, C.G. Östenson, D.C. Andersson, U. Hedin, E. Hermesz, J.O. Lundberg, J. Yang, and J. Pernow. 2018. Erythrocytes from patients with type 2 diabetes induce endothelial dysfunction via arginase I. Journal of the American College of Cardiology 72: 769–780. https://doi.org/10.1016/j.jacc.2018.05.052.

    Article  CAS  PubMed  Google Scholar 

  49. Gopaul, K.P., and M.A. Crook. 2006. Sialic acid: A novel marker of cardiovascular disease? Clinical Biochemistry 39: 667–681. https://doi.org/10.1016/j.clinbiochem.2006.02.010.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, C., J. Chen, Y. Liu, and D. Xu. 2019. Sialic acid metabolism as a potential therapeutic target of atherosclerosis. Lipids in Health and Disease 18: 173. https://doi.org/10.1186/s12944-019-1113-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez, P.S., J. O'Prey, S. Cardaci, V.J.A. Barthet, J.I. Sakamaki, F. Beaumatin, A. Roseweir, D.M. Gay, G. Mackay, G. Malviya, E. Kania, S. Ritchie, A.D. Baudot, B. Zunino, A. Mrowinska, C. Nixon, D. Ennis, A. Hoyle, D. Millan, et al. 2018. Mannose impairs tumour growth and enhances chemotherapy. Nature 563: 719–723. https://doi.org/10.1038/s41586-018-0729-3.

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Wang, X.J., R.L. Liu, W.C. Zhu, H.Y. Chu, H. Yu, P. Wei, X.Y. Wu, H.W. Zhu, H. Gao, J. Liang, G.H. Li, and W.W. Yang. 2019. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis. Nature 571: 127–131. https://doi.org/10.1038/s41586-019-1340-y.

    Article  CAS  PubMed  Google Scholar 

  53. Tardif, J.C., and M. Samuel. 2023. Inflammation contributes to cardiovascular risk in patients receiving statin therapy. Lancet 401 (10384): 1245–1247. https://doi.org/10.1016/S0140-6736(23)00454-3.

    Article  CAS  PubMed  Google Scholar 

  54. Cai, T., L. Abel, O. Langford, G. Monaghan, J.K. Aronson, R.J. Stevens, S. Lay-Flurrie, C. Koshiaris, R.J. McManus, F.D.R. Hobbs, and J.P. Sheppard. 2021. Associations between statins and adverse events in primary prevention of cardiovascular disease: Systematic review with pairwise, network, and dose-response meta-analyses. BMJ 374: n1537. https://doi.org/10.1136/bmj.n1537.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81973319, 81673427) and the Chongqing Research Program of Natural Science (No. cstc2019jcyj-msxmX0372).

Author information

Authors and Affiliations

Authors

Contributions

Yi Jia and Dongfeng Zeng designed the study. Hongmei Liu and Jin Li analyzed the data and wrote the manuscript. Hongmei Liu, Yuanting She and Wenying Fu performed the animal experiments. Jin Li, Niting Wu and Hongyu Quan performed the cell experiments. Yadan Luo and Yan Huang performed the ion-paired HPLC analysis. Jin Li and Niting Wu collected the clinical samples. Yi Jia, Dongfeng Zeng and Xiaohui Li revised the manuscript.

Corresponding authors

Correspondence to Dongfeng Zeng or Yi Jia.

Ethics declarations

Conflict of Interest

The authors have declared that no conflicts of interest exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1373 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, J., Wu, N. et al. Supplementing Glucose Intake Reverses the Inflammation Induced by a High-Fat Diet by Increasing the Expression of Siglec-E Ligands on Erythrocytes. Inflammation (2024). https://doi.org/10.1007/s10753-023-01932-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-023-01932-0

KEY WORDS

Navigation