Skip to main content

Advertisement

Log in

Manganese Exacerbates ConA-Induced Liver Inflammation via the cGAS-STING Signaling Pathway

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

There is a potential association between the dysregulation of trace elements and impaired liver function. Elevated levels of manganese, an essential metal ion, have been observed in liver-related diseases, and excessive intake of manganese can worsen liver damage. However, the specific mechanisms underlying manganese-induced liver injury are not well understood. The aim of our study was to investigate the effects of excess manganese on autoimmune hepatitis (AIH) and elucidate its mechanisms. Our findings revealed that manganese exacerbates liver damage under ConA-induced inflammatory conditions. Transcriptomic and experimental data suggested that manganese enhances inflammatory signaling and contributes to the inflammatory microenvironment in the liver of AIH mice. Further investigations demonstrated that manganese exacerbates liver injury by activating the cGAS-STING signaling pathway and its downstream pro-inflammatory factors such as IFN\(\alpha\), IFN\(\beta\), TNF\(\alpha\), and IL-6 in the liver of AIH mice. These results suggest that manganese overload promotes the progression of AIH by activating cGAS-STING-mediated inflammation, providing a new perspective for the treatment and prognosis of AIH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Horning, K.J., S.W. Caito, K.G. Tipps, A.B. Bowman, and M. Aschner. 2015. Manganese is essential for neuronal health. Annual Review of Nutrition 35: 71–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keen, C.L., J.L. Ensunsa, M.H. Watson, D.L. Baly, S.M. Donovan, M.H. Monaco, et al. 1999. Nutritional aspects of manganese from experimental studies. Neurotoxicology 20: 213–223.

    CAS  PubMed  Google Scholar 

  3. Gandhi, D., A.P. Rudrashetti, and S. Rajasekaran. 2022. The impact of environmental and occupational exposures of manganese on pulmonary, hepatic, and renal functions. Journal of Applied Toxicology 42: 103–129.

    Article  CAS  PubMed  Google Scholar 

  4. O’Neal, S.L., and W. Zheng. 2015. Manganese toxicity upon overexposure: A decade in review. Current Environmental Health Reports 2: 315–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakayama, A., H. Fukuda, M. Ebara, H. Hamasaki, K. Nakajima, and H. Sakurai. 2002. A new diagnostic method for chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma based on serum metallothionein, copper, and zinc levels. Biological and Pharmaceutical Bulletin 25: 426–431.

    Article  CAS  PubMed  Google Scholar 

  6. Versieck, J., F. Barbier, A. Speecke, and J. Hoste. 1974. Manganese, copper, and zinc concentrations in serum and packed blood cells during acute hepatitis, chronic hepatitis, and posthepatitic cirrhosis. Clinical Chemistry 20: 1141–1145.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, J., L. Tan, Z. Liu, and R. Shi. 2023. Blood and urine manganese exposure in non-alcoholic fatty liver disease and advanced liver fibrosis: An observational study. Environmental Science and Pollution Research International 30: 22222–22231.

    Article  CAS  PubMed  Google Scholar 

  8. Leyva-Illades, D., P. Chen, C.E. Zogzas, S. Hutchens, J.M. Mercado, C.D. Swaim, et al. 2014. SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. Journal of Neuroscience 34: 14079–14095.

    Article  PubMed  Google Scholar 

  9. Quadri, M., A. Federico, T. Zhao, G.J. Breedveld, C. Battisti, C. Delnooz, et al. 2012. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. American Journal of Human Genetics 90: 467–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ward, L.D., H.C. Tu, C.B. Quenneville, S. Tsour, A.O. Flynn-Carroll, M.M. Parker, et al. 2021. GWAS of serum ALT and AST reveals an association of SLC30A10 Thr95Ile with hypermanganesemia symptoms. Nature Communications 12: 4571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rashed, M.N. 2011. The role of trace elements on hepatitis virus infections: A review. Journal of Trace Elements in Medicine and Biology 25: 181–187.

    Article  CAS  PubMed  Google Scholar 

  12. Webb, G.J., G.M. Hirschfield, E.L. Krawitt, and M.E. Gershwin. 2018. Cellular and molecular mechanisms of autoimmune hepatitis. Annual Review of Pathology: Mechanisms of Disease 13: 247–292.

    Article  CAS  Google Scholar 

  13. Fan, J.H., G.F. Liu, X.D. Lv, R.Z. Zeng, L.L. Zhan, and X.P. Lv. 2021. Pathogenesis of autoimmune hepatitis. World Journal of Hepatology 13: 879–886.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Floreani, A., P. Restrepo-Jiménez, M.F. Secchi, S. De Martin, P.S.C. Leung, E. Krawitt, et al. 2018. Etiopathogenesis of autoimmune hepatitis. Journal of Autoimmunity 95: 133–143.

    Article  CAS  PubMed  Google Scholar 

  15. Jones, D.B., and C.O. Johns. 1916. Some proteins from the jack bean, Canavalia Ensiformis. Journal of Biological Chemistry 28: 67–75.

    Article  CAS  Google Scholar 

  16. Tiegs, G., J. Hentschel, and A. Wendel. 1992. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. The Journal of Clinical Investigation 90: 196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y., H. Hao, and T. Hou. 2022. Concanavalin A-induced autoimmune hepatitis model in mice: Mechanisms and future outlook. Open Life Sciences 17: 91–101.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kusters, S., F. Gantner, G. Kunstle, and G. Tiegs. 1996. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 111: 462–471.

    Article  CAS  PubMed  Google Scholar 

  19. Srisuchart, B., M.J. Taylor, and R.P. Sharma. 1987. Alteration of humoral and cellular immunity in manganese chloride-treated mice. Journal of Toxicology and Environment Health 22: 91–99.

    Article  CAS  Google Scholar 

  20. Wang, C., Y. Guan, M. Lv, R. Zhang, Z. Guo, X. Wei, et al. 2018. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and Is required for the host defense against DNA viruses. Immunity 48: 675-687.e7.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, R., W. Yang, H. Zhu, J. Zhai, M. Xue, and C. Zheng. 2023. NLRC4 promotes the cGAS-STING signaling pathway by facilitating CBL-mediated K63-linked polyubiquitination of TBK1. Journal of Medical Virology 95: e29013.

    Article  CAS  PubMed  Google Scholar 

  22. Xu, H., C. Su, A. Pearson, C.H. Mody, and C. Zheng. 2017. Herpes Simplex Virus 1 UL24 abrogates the DNA sensing signal pathway by inhibiting NF-κB activation. Journal of Virology 91: e00025-17.

  23. Chen, K., C. Lai, Y. Su, W.D. Bao, L.N. Yang, P.P. Xu, et al. 2022. cGAS-STING-mediated IFN-I response in host defense and neuroinflammatory diseases. Current Neuropharmacology 20: 362–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. García-Buey, L., C. García-Monzón, S. Rodriguez, M.J. Borque, A. García-Sánchez, R. Iglesias, et al. 1995. Latent autoimmune hepatitis triggered during interferon therapy in patients with chronic hepatitis C. Gastroenterology 108: 1770–1777.

    Article  PubMed  Google Scholar 

  25. Villamil, A., E. Mullen, P. Casciato, and A. Gadano. 2015. Interferon beta 1a-induced severe autoimmune hepatitis in patients with multiple sclerosis: Report of two cases and review of the literature. Annals of Hepatology 14: 273–280.

    Article  CAS  PubMed  Google Scholar 

  26. Hao, J., W. Sun, and H. Xu. 2022. Pathogenesis of concanavalin A induced autoimmune hepatitis in mice. International Immunopharmacology 102: 108411.

    Article  CAS  PubMed  Google Scholar 

  27. Decout, A., J.D. Katz, S. Venkatraman, and A. Ablasser. 2021. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology 21: 548–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grivennikov, S.I., A.V. Tumanov, D.J. Liepinsh, A.A. Kruglov, B.I. Marakusha, A.N. Shakhov, et al. 2005. Distinct and nonredundant in vivo functions of TNF produced by t cells and macrophages/neutrophils: Protective and deleterious effects. Immunity 22: 93–104.

    CAS  PubMed  Google Scholar 

  29. Mizuhara, H., E. O’Neill, N. Seki, T. Ogawa, C. Kusunoki, K. Otsuka, et al. 1994. T cell activation-associated hepatic injury: Mediation by tumor necrosis factors and protection by interleukin 6. Journal of Experimental Medicine 179: 1529–1537.

    Article  CAS  PubMed  Google Scholar 

  30. Brenner, C., L. Galluzzi, O. Kepp, and G. Kroemer. 2013. Decoding cell death signals in liver inflammation. Journal of Hepatology 59: 583–594.

    Article  CAS  PubMed  Google Scholar 

  31. Knight, B., R. Lim, G.C. Yeoh, and J.K. Olynyk. 2007. Interferon-gamma exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. Journal of Hepatology 47: 826–833.

    Article  CAS  PubMed  Google Scholar 

  32. Toyonaga, T., O. Hino, S. Sugai, S. Wakasugi, K. Abe, M. Shichiri, et al. 1994. Chronic active hepatitis in transgenic mice expressing interferon-gamma in the liver. Proceedings of the National Academy of Sciences of the United States of America 91: 614–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miyagi, T., T. Takehara, T. Tatsumi, T. Suzuki, M. Jinushi, Y. Kanazawa, et al. 2004. Concanavalin a injection activates intrahepatic innate immune cells to provoke an antitumor effect in murine liver. Hepatology 40: 1190–1196.

    Article  CAS  PubMed  Google Scholar 

  34. Ivashkiv, L.B., and L.T. Donlin. 2014. Regulation of type I interferon responses. Nature Reviews Immunology 14: 36–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Su, C., Y.D. Tang, and C. Zheng. 2021. DExD/H-box helicases: Multifunctional regulators in antiviral innate immunity. Cellular and Molecular Life Sciences 79: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berardi, S., F. Lodato, A. Gramenzi, A. D’Errico, M. Lenzi, A. Bontadini, et al. 2007. High incidence of allograft dysfunction in liver transplanted patients treated with pegylated-interferon alpha-2b and ribavirin for hepatitis C recurrence: Possible de novo autoimmune hepatitis? Gut 56: 237–242.

    Article  CAS  PubMed  Google Scholar 

  37. Hong, Z., J. Mei, H. Guo, J. Zhu, and C. Wang. 2022. Intervention of cGAS‒STING signaling in sterile inflammatory diseases. Journal of Molecular Cell Biology 14: mjac005.

  38. Zhang, R., C. Wang, Y. Guan, X. Wei, M. Sha, M. Yi, et al. 2021. Manganese salts function as potent adjuvants. Cellular & Molecular Immunology 18: 1222–1234.

    Article  CAS  Google Scholar 

  39. Xu, D., Y. Tian, Q. Xia, and B. Ke. 2021. The cGAS-STING pathway: Novel perspectives in liver diseases. Frontiers in Immunology 12: 682736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Skopelja-Gardner, S., J. An, and K.B. Elkon. 2022. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nature Reviews Nephrology 18: 558–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Motwani, M., S. Pesiridis, and K.A. Fitzgerald. 2019. DNA sensing by the cGAS-STING pathway in health and disease. Nature Reviews Genetics 20: 657–674.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, S., K. Wang, R. Lin, and C. Zheng. 2013. Herpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production. Journal of Virology 87: 12814–12827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Papo, T., P. Marcellin, J. Bernuau, F. Durand, T. Poynard, and J.P. Benhamou. 1992. Autoimmune chronic hepatitis exacerbated by alpha-interferon. Annals of Internal Medicine 116: 51–53.

    Article  CAS  PubMed  Google Scholar 

  44. Tana, M.M., A. Klepper, A. Lyden, A.O. Pisco, M. Phelps, B. McGee, et al. 2022. Transcriptomic profiling of blood from autoimmune hepatitis patients reveals potential mechanisms with implications for management. PLoS ONE 17: e0264307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank Putuo People’s Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.

Funding

This work was supported by grants from the National Natural Science Foundation of China (32270754 and 32070768).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the study and supported the publication of the final version. (I) Design and experimentation: Kaidireya Saimaier, Sanxing Han, Ling Xie, Chun Wang, Jie Lv, Wei Zhuang Guangyu Liu, Ru Zhang, Qiuhong Hua, and Changjie Shi; (II) supervision: Changsheng Du; (III) manuscript writing: Kaidireya Saimaier and Changsheng Du.

Corresponding author

Correspondence to Changsheng Du.

Ethics declarations

Ethical Approval

All animal experiments were conducted following the line of legislation and ethical guidelines of the People’s Republic of China.

Consent for Participation and Publication

This is not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saimaier, K., Han, S., Lv, J. et al. Manganese Exacerbates ConA-Induced Liver Inflammation via the cGAS-STING Signaling Pathway. Inflammation 47, 333–345 (2024). https://doi.org/10.1007/s10753-023-01912-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01912-4

KEY WORDS

Navigation