Skip to main content

Advertisement

Log in

Runx1 Deficiency Promotes M2 Macrophage Polarization Through Enhancing STAT6 Phosphorylation

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Our previous study had demonstrated that Runx1 promoted LPS-induced macrophage inflammatory response, however, the role of Runx1 in M2 macrophage polarization still remains largely unknown. This study was conducted to investigate the role of Runx1 in IL-4/IL-13-induced M2 macrophage polarization and its potential regulatory mechanism. We found that exposure of macrophages to IL-4/IL-13 induced a remarkable increasement in Runx1 expression level. Specifically, we established genetically modified mice lacking Runx1 in myeloid cells, including macrophages. RNA-Seq was performed to identify differentially expressed genes (DEGs) between Runx1 knockout and WT control bone marrow-derived macrophages (BMDMs). We identified 686 DEGs, including many genes which were highly expressed in M2 macrophage. In addition, bioinformatics analysis indicated that these DEGs were significantly enriched in extracellular matrix-related processes. Moreover, RT-qPCR analysis showed that there was an obvious upregulation in the relative expression levels of M2 marker genes, including Arg1, Ym1, Fizz1, CD71, Mmp9, and Tgm2, in Runx1 knockout macrophages, as compared to WT controls. Consistently, similar results were obtained in the protein and enzymatic activity levels of Arg1. Finally, we found that the STAT6 phosphorylation level was significantly enhanced in Runx1 knockout macrophages, and the STAT6 inhibitor AS1517499 partly reduced the upregulated effect of Runx1 deficiency on the M2 macrophage polarization. Taken together, Runx1 deficiency facilitates IL-4/IL-13-induced M2 macrophage polarization through enhancing STAT6 phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

DATA AVAILABILITY

The data that produced from this study are available from the corresponding author upon reasonable request.

References

  1. Kolliniati, O., E. Leronymaki, E. Vergadi, et al. 2022. Metabolic regulation of macrophage activation. Journal of Innate Immunity 14: 51–68.

    Article  CAS  PubMed  Google Scholar 

  2. Russell, D.G., L. Huang, and B.C. VanderVen. 2019. Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology 19: 291–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mosser, D.M., K. Hamidzadeh, and R. Goncalves. 2021. Macrophages and the maintenance of homeostasis. Cellular & Molecular Immunology 18: 579–587.

    Article  CAS  Google Scholar 

  4. Ganesh, G.V., and K.M. Ramkumar. 2020. Macrophage mediation in normal and diabetic wound healing responses. Infammation Research 69: 347–363.

    Article  CAS  Google Scholar 

  5. Murray, P.J. 2017. Macrophage polarization. Annual Review of Physiology 79: 541–566.

    Article  CAS  PubMed  Google Scholar 

  6. Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.

    Article  CAS  PubMed  Google Scholar 

  7. Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nature Reviews Immunology 11: 750–761.

    Article  CAS  PubMed  Google Scholar 

  8. Li, L., D.S. Ng, W.C. Mah, et al. 2015. A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death & Differentiation 22: 1081–1093.

    Article  CAS  Google Scholar 

  9. Zhou, X., W. Li, S. Wang, et al. 2019. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Reports 27: 1176–1189.

    Article  CAS  PubMed  Google Scholar 

  10. Sood, R., Y. Kamikubo, and P. Liu. 2017. Role of RUNX1 in hematological malignancies. Blood 129: 2070–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Bruijn, M., and E. Dzierzak. 2017. Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 129: 2061–2069.

    Article  PubMed  Google Scholar 

  12. Ono, M., H. Yaguchi, N. Ohkura, et al. 2007. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446: 685–689.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, F., G. Meng, and W. Strober. 2008. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin17-producing T cells. Nature Immunology 9: 1297–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prokunina, L., C. Castillejo-Lopez, F. Oberg, et al. 2002. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nature Genetics 32: 666–669.

    Article  CAS  PubMed  Google Scholar 

  15. Tokuhiro, S., R. Yamada, X. Chang, et al. 2003. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nature Genetics 35: 341–348.

    Article  CAS  PubMed  Google Scholar 

  16. Lin, T.C. 2022. RUNX1 and cancer. Biochimica et biophysica acta (BBA)-reviews on cancer 1877: 188715.

  17. Zheng, L.L., L. Cai, X.Q. Zhang, et al. 2022. Dysregulated RUNX1 predicts poor prognosis by mediating epithelialmesenchymal transition in cervical cancer. Current Medical Science 42: 1285–1296.

    Article  CAS  PubMed  Google Scholar 

  18. Li, Q., Q. Lai, C. He, et al. 2019. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. Journal of Experimental & Clinical Cancer Research 38: 334.

    Article  Google Scholar 

  19. Hong, M., J. He, D. Li, et al. 2020. Runt-related transcription factor 1 promotes apoptosis and inhibits neuroblastoma progression in vitro and in vivo. Journal of Experimental & Clinical Cancer Research 39: 52.

    Article  CAS  Google Scholar 

  20. Luo, M.C., S.Y. Zhou, D.Y. Feng, et al. 2016. Runt-related transcription factor 1 (RUNX1) Binds to p50 in macrophages and enhances TLR4-triggered inflammation and septic shock. Journal of Biological Chemistry 291: 22011–22020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ray, A., and B.N. Dittel. 2010. Isolation of mouse peritoneal cavity cells. Journal of Visualized Experiments 35: 1488.

    Google Scholar 

  22. Toda, G., T. Yamauchi, T. Kadowaki, et al. 2020. Preparation and culture of bone marrow-derived macrophages from mice for functional analysis. STAR Protocols 2: 100246.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shannon, P., A. Markiel, O. Ozier, et al. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bader, G.D., and C.W. Hogue. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chin, C.H., S.H. Chen, H.H. Wu, et al. 2014. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 8 (Suppl 4): S11.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang, C., W. Li, X. Lei, et al. 2021. Targeting lysophospholipid acid receptor 1 and ROCK kinases promotes antiviral innate immunity. Science Advances 7: eabb5933.

  27. Jablonski, K.A., S.A. Amici, L.M. Webb, et al. 2015. Novel markers to delineate murine M1 and M2 macrophages. PLoS ONE 10: e0145342.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Makita, N., Y. Hizukuri, K. Yamashiro, et al. 2015. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. International Immunology 27: 131–141.

    Article  CAS  PubMed  Google Scholar 

  29. Divakaruni, A.S., W.Y. Hsieh, L. Minarrieta, et al. 2018. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metabolism 28: 490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luiz, J.P.M., J.E. Toller-Kawahisa, P.R. Viacava, et al. 2020. MEK5/ERK5 signaling mediates IL-4-induced M2 macrophage differentiation through regulation of c-Myc expression. Journal of Leukocyte Biology 108: 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  31. Martinez, F.O., L. Helming, R. Milde, et al. 2013. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: Similarities and differences. Blood 121: e57–e69.

    Article  CAS  PubMed  Google Scholar 

  32. Satoh, T., O. Takeuchi, A. Vandenbon, et al. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunology 11: 936–944.

    Article  CAS  PubMed  Google Scholar 

  33. Liao, X., N. Sharma, F. Kapadia, et al. 2011. Krüppel-like factor 4 regulates macrophage polarization. Journal of Clinical Investigation 121: 2736–2749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Odegaard, J.I., R.R. Ricardo-Gonzalez, M.H. Goforth, et al. 2007. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447: 1116–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruffell, D., F. Mourkioti, A. Gambardella, et al. 2009. A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America 106: 17475–17480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pello, O.M., M. De Pizzol, M. Mirolo, et al. 2012. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119: 411–421.

    Article  PubMed  Google Scholar 

  37. Krausgruber, T., K. Blazek, T. Smallie, et al. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.

    Article  CAS  PubMed  Google Scholar 

  38. Nepal, S., C. Tiruppathi, Y. Tsukasaki, et al. 2019. STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation. Proceedings of the National Academy of Sciences of the United States of America 116: 16513–16518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chi, Y., Z. Huang, Q. Chen, et al. 2018. Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish. Open Biology 8: 180043.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blyth, K., N. Slater, L. Hanlon, et al. 2009. Runx1 promotes B-cell survival and lymphoma development. Blood Cells, Molecules, and Diseases 43: 12–19.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, T., M. Luo, W. Cai, et al. 2018. Runt-related transcription factor 1 (RUNX1) promotes TGF-β-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110δ. eBioMedicine 31: 217–225.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, Q., T. Stacy, M. Binder, et al. 1996. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America 93: 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mollo, N., M. Aurilia, R. Scognamiglio, et al. 2022. Overexpression of the Hsa21 transcription factor RUNX1 modulates the extracellular matrix in trisomy 21 cells. Frontiers in Genetics 13: 824922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Y., Y. Zhang, Z. Ren, et al. 2023. RUNX1 upregulation causes mitochondrial dysfunction via regulating the PI3K-Akt pathway in iPSC from patients with down syndrome. Molecules and Cells 46: 219–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin, W., X. Wan, A. Sun, et al. 2021. RUNX1/EGFR pathway contributes to STAT3 activation and tumor growth caused by hyperactivated mTORC1. Molecular Therapy: Oncolytics 23: 387–401.

    PubMed  Google Scholar 

  46. Kawabata, H. 2019. Transferrin and transferrin receptors update. Free Radical Biology and Medicine 133: 46–54.

    Article  CAS  PubMed  Google Scholar 

  47. Augoff, K., A. Hryniewicz-Jankowska, R. Tabola, et al. 2022. MMP9: A tough target for targeted therapy for cancer. Cancers (Basel) 14: 1847.

    Article  CAS  PubMed  Google Scholar 

  48. Nelson, S.M., X. Lei, and K.S. Prabhu. 2011. Selenium levels affect the IL-4-induced expression of alternative activation markers in murine macrophages. Journal of Nutrition 141: 1754–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Odegaard, J.I., R.R. Ricardo-Gonzalez, A. Red Eagle, et al. 2008. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metabolism 7: 496–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Y., T. Zuo, A. McVicar, et al. 2022. Runx1 is a key regulator of articular cartilage homeostasis by orchestrating YAP, TGFβ, and Wnt signaling in articular cartilage formation and osteoarthritis. Bone Research 10: 63.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Luo, Y., Y. Zhang, G. Miao, et al. 2019. Runx1 regulates osteogenic differentiation of BMSCs by inhibiting adipogenesis through Wnt/β-catenin pathway. Archives of Oral Biology 97: 176–184.

    Article  CAS  PubMed  Google Scholar 

  52. Yan, J., Z. Zhang, J. Yang, et al. 2015. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. Journal of the American Society of Nephrology 26: 3060–3071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We would like to express our special thanks to Dr. Hongyan Wang (Shanghai Institute of Biochemistry and Cell Biology) for her kind assistance to this study.

Funding

This research was supported by the National Natural Science Foundation of China (82000678), the Young Talent Development Plan of Changzhou Health Commission (CZQM2021014), the Changzhou High-Level Medical Talents Training Project (2022CZBJ077), the Foundation of Science and Technology Development of Nanjing Medical University (NMUB2019315), and the Special Fund Project for Laboratory Medicine Research of Jiangsu Medical Association (SYH-3201160–0065).

Author information

Authors and Affiliations

Authors

Contributions

S. Zhou and T. Zhao performed the experiments and prepared the manuscript; T. Feng, T. Zhou, and P. Zhang designed the study and revised the manuscript; S. Zhou, T. Zhao, and W. Zhang analyzed the data; X. Chen, X. Zou, Y. Yang, and Q. Wang helped with the experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tong Zhou or Tongbao Feng.

Ethics declarations

Ethics Approval

Animal procedures were performed strictly in accordance with the Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of Nanjing Medical University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Zhao, T., Chen, X. et al. Runx1 Deficiency Promotes M2 Macrophage Polarization Through Enhancing STAT6 Phosphorylation. Inflammation 46, 2241–2253 (2023). https://doi.org/10.1007/s10753-023-01874-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01874-7

KEY WORDS

Navigation