Skip to main content
Log in

Regulation of NLRP3 Inflammasome Activation and Inflammatory Exosome Release in Podocytes by Acid Sphingomyelinase During Obesity

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The activation of nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been reported to importantly contribute to glomerular inflammation and injury under different pathological conditions such as obesity. However, the mechanism mediating NLRP3 inflammasome activation in podocytes and subsequent glomerular injury remains poorly understood. Given that the ceramide signaling pathway has been reported to be implicated in obesity-related glomerulopathy (ORG), the present study was designed to test whether the ceramide-producing enzyme, acid sphingomyelinase (ASM), determines NLRP3 inflammasome activation and inflammatory exosome release in podocytes leading to glomerular inflammation and injury during ORG. In Smpd1trg/Podocre mice, podocyte-specific overexpression of Smpd1 gene which encodes ASM significantly exaggerated high-fat diet (HFD)-induced NLRP3 inflammasome activation in podocytes and immune cell infiltration in glomeruli compared to WT/WT mice. Smpd1 gene deletion, however, blocked these pathological changes induced by HFD in Smpd1−/− mice. Accompanied with NLRP3 inflammasome activation and glomerular inflammation, urinary excretion of exosomes containing podocyte marker and NLRP3 inflammasome products (IL-1β and IL-18) in Smpd1trg/Podocre mice on the HFD was much higher than that in WT/WT mice. In contrast, Smpd1−/− mice on the HDF had significantly lower urinary exosome excretion than WT/WT mice. Correspondingly, HFD-induced podocyte injury, glomerular sclerosis, and proteinuria were more severe in Smpd1trg/Podocre mice, but milder in Smpd1−/− mice compared to WT/WT mice. Using podocytes isolated from these mice, we demonstrated that visfatin, a prototype pro-inflammatory adipokine, induced NLRP3 inflammasome activation and enrichment of multivesicular bodies (MVBs) containing IL-1β in podocytes, which was much stronger in podocytes from Smpd1trg/Podocre mice, but weaker in those from Smpd1−/− mice than WT/WT podocytes. By quantitative analysis of exosomes, it was found that upon visfatin stimulation, podocytes from Smpd1trg/Podocre mice released much more exosomes containing NLRP3 inflammasome products, but podocytes from Smpd1−/− mice released much less exosomes compared to WT/WT podocytes. Super-resolution microscopy demonstrated that visfatin inhibited lysosome-MVB interaction in podocytes, indicating impaired MVB degradation by lysosome. The inhibition of lysosome-MVB interaction by visfatin was amplified by Smpd1 gene overexpression but attenuated by Smpd1 gene deletion. Taken together, our results suggest that ASM in podocytes is a crucial regulator of NLRP3 inflammasome activation and inflammatory exosome release that instigate glomerular inflammation and injury during obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.

    CAS  PubMed  Google Scholar 

  2. Abais, J.M., C. Zhang, M. Xia, Q. Liu, T.W. Gehr, K.M. Boini, et al. 2013. NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxidants & redox signaling 18: 1537–1548.

    CAS  Google Scholar 

  3. Boini, K.M., M. Xia, S. Koka, T.W. Gehr, and P.L. Li. 2016. Instigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: Role of acid sphingomyelinase gene. Oncotarget 7: 19031–19044.

    PubMed  PubMed Central  Google Scholar 

  4. Cruz, C.M., A. Rinna, H.J. Forman, A.L. Ventura, P.M. Persechini, and D.M. Ojcius. 2007. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. Journal of Biological Chemistry 282: 2871–2879.

    CAS  PubMed  Google Scholar 

  5. Halle, A., V. Hornung, G.C. Petzold, C.R. Stewart, B.G. Monks, T. Reinheckel, et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology 9: 857–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nour, A.M., Y.G. Yeung, L. Santambrogio, E.D. Boyden, E.R. Stanley, and J. Brojatsch. 2009. Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infection and Immunity 77: 1262–1271.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, G.Y., and G. Nunez. 2010. Sterile inflammation: Sensing and reacting to damage. Nature Reviews Immunology 10: 826–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lamkanfi, M. 2011. Emerging inflammasome effector mechanisms. Nature Reviews Immunology 11: 213–220.

    CAS  PubMed  Google Scholar 

  9. Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.

    CAS  PubMed  Google Scholar 

  10. Srinivasula, S.M., J.L. Poyet, M. Razmara, P. Datta, Z. Zhang, and E.S. Alnemri. 2002. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. Journal of Biological Chemistry 277: 21119–21122.

    CAS  PubMed  Google Scholar 

  11. Boini, K.M., M. Xia, J.M. Abais, G. Li, A.L. Pitzer, T.W. Gehr, et al. 2014. Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing. Biochimica et Biophysica Acta 1843: 836–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Griffiths, G., and K. Simons. 1986. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 234: 438–443.

    CAS  PubMed  Google Scholar 

  13. Gu, F., C.M. Crump, and G. Thomas. 2001. Trans-Golgi network sorting. Cellular and molecular life sciences : CMLS 58: 1067–1084.

    CAS  PubMed  Google Scholar 

  14. Colombo, M., G. Raposo, and C. Thery. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology 30: 255–289.

    CAS  PubMed  Google Scholar 

  15. Schorey, J.S., and C.V. Harding. 2016. Extracellular vesicles and infectious diseases: New complexity to an old story. The Journal of Clinical Investigation 126: 1181–1189.

    PubMed  PubMed Central  Google Scholar 

  16. Li, G., J. Kidd, and P.L. Li. 2020. Podocyte lysosome dysfunction in chronic glomerular diseases. International journal of molecular sciences 21.

  17. Takahashi, A., R. Okada, K. Nagao, Y. Kawamata, A. Hanyu, S. Yoshimoto, et al. 2017. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nature Communications 8: 15287.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eitan, E., C. Suire, S. Zhang, and M.P. Mattson. 2016. Impact of lysosome status on extracellular vesicle content and release. Ageing research reviews 32: 65–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. van Balkom, B.W., T. Pisitkun, M.C. Verhaar, and M.A. Knepper. 2011. Exosomes and the kidney: Prospects for diagnosis and therapy of renal diseases. Kidney International 80: 1138–1145.

    PubMed  PubMed Central  Google Scholar 

  20. Zhou, H., H. Kajiyama, T. Tsuji, X. Hu, A. Leelahavanichkul, S. Vento, et al. 2013. Urinary exosomal Wilms’ tumor-1 as a potential biomarker for podocyte injury. American Journal of Physiology. Renal Physiology 305: F553–F559.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Erdbrugger, U., and T.H. Le. 2016. Extracellular vesicles in renal diseases: More than novel biomarkers? Journal of the American Society of Nephrology 27: 12–26.

    CAS  PubMed  Google Scholar 

  22. Hara, M., T. Yanagihara, I. Kihara, K. Higashi, K. Fujimoto, and T. Kajita. 2005. Apical cell membranes are shed into urine from injured podocytes: A novel phenomenon of podocyte injury. Journal of the American Society of Nephrology: JASN 16: 408–416.

    CAS  PubMed  Google Scholar 

  23. Lee, H., K.H. Han, S.E. Lee, S.H. Kim, H.G. Kang, and H.I. Cheong. 2012. Urinary exosomal WT1 in childhood nephrotic syndrome. Pediatric Nephrology(Berlin, Germany) 27: 317–320.

    CAS  PubMed  Google Scholar 

  24. Lytvyn, Y., F. Xiao, C.R. Kennedy, B.A. Perkins, H.N. Reich, J.W. Scholey, et al. 2017. Assessment of urinary microparticles in normotensive patients with type 1 diabetes. Diabetologia 60: 581–584.

    CAS  PubMed  Google Scholar 

  25. Stahl, A.L., K. Johansson, M. Mossberg, R. Kahn, and D. Karpman. 2019. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatric nephrology 34: 11–30.

    PubMed  Google Scholar 

  26. Tkaczyk, M., and Z. Baj. 2002. Surface markers of platelet function in idiopathic nephrotic syndrome in children. Pediatric nephrology 17: 673–677.

    PubMed  Google Scholar 

  27. Hong, J., O.M. Bhat, G. Li, S.K. Dempsey, Q. Zhang, J.K. Ritter, et al. 2019. Lysosomal regulation of extracellular vesicle excretion during d-ribose-induced NLRP3 inflammasome activation in podocytes. Biochimica et Biophysica Acta, Molecular Cell Research 1866: 849–860.

    CAS  PubMed  Google Scholar 

  28. Huang, D., G. Li, Q. Zhang, O.M. Bhat, Y. Zou, J.K. Ritter, et al. 2021. Contribution of podocyte inflammatory exosome release to glomerular inflammation and sclerosis during hyperhomocysteinemia. Biochimica et Biophysica Acta, Molecular Basis of Disease 1867.

    CAS  PubMed  Google Scholar 

  29. Li, G., D. Huang, N. Li, J.K. Ritter, and P.L. Li. 2021. Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. Redox biology 43.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kajimoto, T., T. Okada, S. Miya, L. Zhang, and S. Nakamura. 2013. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nature communications 4: 2712.

    PubMed  Google Scholar 

  31. Trajkovic, K., C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, et al. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319: 1244–1247.

    CAS  PubMed  Google Scholar 

  32. Yuyama, K., H. Sun, S. Mitsutake, and Y. Igarashi. 2012. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. The Journal of biological chemistry 287: 10977–10989.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Alvarez-Erviti, L., Y. Seow, A.H. Schapira, C. Gardiner, I.L. Sargent, M.J. Wood, et al. 2011. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiology of Diseases 42: 360–367.

    CAS  Google Scholar 

  34. Cui, Y., J. Luan, H. Li, X. Zhou, and J. Han. 2016. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Letters 590: 185–192.

    CAS  PubMed  Google Scholar 

  35. Lee, M.J., J.R. Van Brocklyn, S. Thangada, C.H. Liu, A.R. Hand, R. Menzeleev, et al. 1998. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279: 1552–1555.

    CAS  PubMed  Google Scholar 

  36. Li, P.L., Y. Zhang, J.M. Abais, J.K. Ritter, and F. Zhang. 2013. Cyclic ADP-ribose and NAADP in vascular regulation and diseases. Messenger 2: 63–85.

    CAS  PubMed  Google Scholar 

  37. Liebau, M.C., F. Braun, K. Hopker, C. Weitbrecht, V. Bartels, R.U. Muller, et al. 2013. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS One1 8.

    CAS  Google Scholar 

  38. Lorber, D. 2014. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity 7: 169–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Boulanger, C.M., X. Loyer, P.E. Rautou, and N. Amabile. 2017. Extracellular vesicles in coronary artery disease. Nature Reviews. Cardiology 14: 259–272.

    CAS  PubMed  Google Scholar 

  40. Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev. 2015. Extracellular vesicles and atherosclerotic disease. Cellular and molecular life sciences: CMLS 72: 2697–2708.

    CAS  PubMed  Google Scholar 

  41. Hessvik, N.P., and A. Llorente. 2018. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences 75: 193–208.

    CAS  PubMed  Google Scholar 

  42. Li, G., D. Huang, J. Hong, O.M. Bhat, X. Yuan, and P.L. Li. 2019. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. American Journal of Physiology Cell Physiology 317: C481–C491.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, G., D. Huang, O.M. Bhat, J.L. Poklis, A. Zhang, Y. Zou, et al. 2020. Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochimica et biophysica acta Molecular and cell biology of lipids 1866.

    PubMed  PubMed Central  Google Scholar 

  44. Gupta, S., R. Natarajan, S.G. Payne, E.J. Studer, S. Spiegel, P. Dent, et al. 2004. Deoxycholic acid activates the c-Jun N-terminal kinase pathway via FAS receptor activation in primary hepatocytes. Role of acidic sphingomyelinase-mediated ceramide generation in FAS receptor activation. The Journal of biological chemistry 279: 5821–8.

    CAS  PubMed  Google Scholar 

  45. Maric, I., J.P. Krieger, P. van der Velden, S. Borchers, M. Asker, M. Vujicic, et al. 2022. Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents. Frontiers in nutrition 9.

    PubMed  PubMed Central  Google Scholar 

  46. Shah, B., K. Tombeau Cost, A. Fuller, C.S. Birken, and L.N. Anderson. 2020. Sex and gender differences in childhood obesity: Contributing to the research agenda. BMJ Nutrition, Prevention & Health 3: 387–390.

    Google Scholar 

  47. Li, G., J. Kidd, C. Kaspar, S. Dempsey, O.M. Bhat, S. Camus, et al. 2020. Podocytopathy and nephrotic syndrome in mice with podocyte-specific deletion of the Asah1 gene: Role of ceramide accumulation in glomeruli. The American journal of pathology 190: 1211–1223.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, D., G. Li, O.M. Bhat, Y. Zou, N. Li, J.K. Ritter, et al. 2022. Exosome biogenesis and lysosome function determine podocyte exosome release and glomerular inflammatory response during hyperhomocysteinemia. The American journal of pathology 192: 43–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Koka, S., M. Xia, C. Zhang, Y. Zhang, P.L. Li, and K.M. Boini. 2019. Podocyte NLRP3 inflammasome activation and formation by adipokine visfatin. Cellular physiology and biochemistry: International journal of experimental cellular physiology, biochemistry, and pharmacology 53: 355–365.

    CAS  PubMed  Google Scholar 

  50. Chen, Y., A.L. Pitzer, X. Li, P.L. Li, L. Wang, and Y. Zhang. 2015. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: Role of HMGB1. Journal of cellular and molecular medicine 19: 2715–2727.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xia, M., C. Zhang, K.M. Boini, A.M. Thacker, and P.L. Li. 2011. Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovascular research 89: 401–409.

    CAS  PubMed  Google Scholar 

  52. Boini, K.M., C. Zhang, M. Xia, W.Q. Han, C. Brimson, J.L. Poklis, et al. 2010. Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochimica et biophysica acta 1801: 1294–1304.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Speakman, J.R. 2019. Use of high-fat diets to study rodent obesity as a model of human obesity. International journal of obesity 43: 1491–1492.

    PubMed  Google Scholar 

  54. Tilg, H., and A.R. Moschen. 2008. Role of adiponectin and PBEF/visfatin as regulators of inflammation: Involvement in obesity-associated diseases. Clinical science 114: 275–288.

    CAS  PubMed  Google Scholar 

  55. Hasegawa, M., R. Imamura, K. Motani, T. Nishiuchi, N. Matsumoto, T. Kinoshita, et al. 2009. Mechanism and repertoire of ASC-mediated gene expression. Journal of immunology 182: 7655–7662.

    CAS  Google Scholar 

  56. Tang, J., H. Yan, and S. Zhuang. 2012. Inflammation and oxidative stress in obesity-related glomerulopathy. International journal of nephrology 2012.

    PubMed  PubMed Central  Google Scholar 

  57. Mima, A., T. Yasuzawa, G.L. King, and S. Ueshima. 2018. Obesity-associated glomerular inflammation increases albuminuria without renal histological changes. FEBS Open Bio 8: 664–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hou, X.X., H.R. Dong, L.J. Sun, M. Yang, H. Cheng, and Y.P. Chen. 2018. Purinergic 2X7 Receptor is involved in the podocyte damage of obesity-related glomerulopathy via activating nucleotide-binding and oligomerization domain-like receptor protein 3 inflammasome. Chinese medical journal 131: 2713–2725.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu, X., X. Huang, L. Zhang, X. Huang, Z. Qin, and F. Hua. 2021. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-kappaB/NLRP3 inflammation pathway. BMC nephrology 22: 218.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Boini, K.M., C. Zhang, M. Xia, J.L. Poklis, and P.L. Li. 2010. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. The Journal of pharmacology and experimental therapeutics 334: 839–846.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, A.Y., F. Yi, S. Jin, M. Xia, Q.Z. Chen, E. Gulbins, et al. 2007. Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxidants & redox signaling 9: 817–828.

    CAS  Google Scholar 

  62. Evavold, C.L., J. Ruan, Y. Tan, S. Xia, H. Wu, and J.C. Kagan. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48 (35–44).

    Google Scholar 

  63. He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, et al. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell research 25: 1285–1298.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Carta, S., S. Tassi, I. Pettinati, L. Delfino, C.A. Dinarello, and A. Rubartelli. 2011. The rate of interleukin-1beta secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. Journal of Biological Chemistry 286: 27069–27080.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Carta, S., F. Penco, R. Lavieri, A. Martini, C.A. Dinarello, M. Gattorno, et al. 2015. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proceedings of the National Academy of Sciences USA 112: 2835–2840.

    CAS  Google Scholar 

  66. Liston, A., and S.L. Masters. 2017. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature Reviews Immunology 17: 208–214.

    CAS  PubMed  Google Scholar 

  67. Yamagishi, R., F. Kamachi, M. Nakamura, S. Yamazaki, T. Kamiya, M. Takasugi, et al. 2022. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Science immunology 7: eabl7209.

    CAS  PubMed  Google Scholar 

  68. Rodriguez-Antonio, I., G.N. Lopez-Sanchez, M. Uribe, N.C. Chavez-Tapia, and N. Nuno-Lambarri. 2021. Role of the inflammasome, gasdermin D, and pyroptosis in non-alcoholic fatty liver disease. Journal of gastroenterology and hepatology 36: 2720–2727.

    CAS  PubMed  Google Scholar 

  69. Xu, B., M. Jiang, Y. Chu, W. Wang, D. Chen, X. Li, et al. 2018. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. Journal of hepatology 68: 773–782.

    CAS  PubMed  Google Scholar 

  70. Settembre, C., and A. Ballabio. 2014. Lysosomal adaptation: how the lysosome responds to external cues. Cold Spring Harbor perspectives in biology 6.

  71. Xia, M., K.M. Boini, J.M. Abais, M. Xu, Y. Zhang, and P.L. Li. 2014. Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. The American journal of pathology 184: 1617–1628.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by NIH grants DK054927 and DK120491.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Pin-Lan Li and Guangbi Li. Methodology: Dandan Huang, Yao Zou, Xiaoyuan Wu, and Guangbi Li. Formal analysis and investigation: Dandan Huang and Guangbi Li. Writing—original draft preparation: Dandan Huang and Guangbi Li. Writing—review and editing: Jason M. Kidd, Todd W.B. Gehr, and Pin-Lan Li. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guangbi Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 183 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Kidd, J.M., Zou, Y. et al. Regulation of NLRP3 Inflammasome Activation and Inflammatory Exosome Release in Podocytes by Acid Sphingomyelinase During Obesity. Inflammation 46, 2037–2054 (2023). https://doi.org/10.1007/s10753-023-01861-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01861-y

KEY WORDS

Navigation