Skip to main content

Advertisement

Log in

Integrated Machine Learning and Bioinformatic Analyses Constructed a Network Between Mitochondrial Dysfunction and Immune Microenvironment of Periodontitis

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Periodontitis is a prevalent and persistent inflammatory condition that impacts the supporting tissues of the teeth, including the gums and bone. Recent research indicates that mitochondrial dysfunction may be involved in the onset and advancement of periodontitis. The current work sought to reveal the interaction between mitochondrial dysfunction and the immune microenvironment in periodontitis. Public data were acquired from MitoCarta 3.0, Mitomap, and GEO databases. Hub markers were screened out by five integrated machine learning algorithms and verified by laboratory experiments. Single-cell sequencing data were utilized to unravel cell-type specific expression levels of hub genes. An artificial neural network model was constructed to discriminate periodontitis from healthy controls. An unsupervised consensus clustering algorithm revealed mitochondrial dysfunction-related periodontitis subtypes. The immune and mitochondrial characteristics were calculated using CIBERSORTx and ssGSEA algorithms. Two hub mitochondria-related markers (CYP24A1 and HINT3) were identified. Single-cell sequencing data revealed that HINT3 was primarily expressed in dendritic cells, while CYP24A1 was mainly expressed in monocytes. The hub genes based artificial neural network model showed robust diagnostic performance. The unsupervised consensus clustering algorithm revealed two distinct mitochondrial phenotypes. The hub genes exhibited a strong correlation with the immune cell infiltration and mitochondrial respiratory chain complexes. The study identified two hub markers that may serve as potential targets for immunotherapy and provided a novel reference for future investigations into the function of mitochondria in periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIAL

The date and materials of the current study are available from the corresponding author on reasonable request.

Abbreviations

ROS:

Reactive oxygen species

OXPHOS:

Oxidative phosphorylation

mtDAMPs:

Mitochondrial damage-associated molecular patterns

PRR:

Pattern recognition receptors

UMAP:

Uniform manifold approximation and projection

GEO:

Gene Expression Omnibus

DEGs:

Differentially expressed genes

FC:

Fold-change

PCA:

Principal component analysis

DMRGs:

Differentially expressed mitochondria-related genes

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LASSO:

Absolute shrinkage and selection operator

SVM-RFE:

Support vector machine recursive feature elimination

ANN:

Artificial neural network

ROC:

Receiver operating characteristic

DCA:

Decision curve analysis

CIBERSORTx:

Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts x

GSEA:

Gene set enrichment analysis

ssGSEA:

Single-sample gene set enrichment analysis

WGCNA:

Weighted correlation network analysis

MM:

Module membership

GS:

Gene significance

CDF:

Cumulative distribution function

AUC:

Area under the curve

MitoPathway:

Mitochondria-related pathway

CT:

Cycle threshold

CtTp:

Ct of target genes for periodontitis sample

CtGp:

Ct of house-keeping genes for periodontitis sample

CtGc:

Ct of housekeeping gene for controls

CtTc:

Ct of target genes for control

References

  1. Pihlstrom, B.L., B.S. Michalowicz, and N.W. Johnson. 2005. Periodontal diseases. The Lancet 366 (9499): 1809–1820.

    Google Scholar 

  2. Hajishengallis, G. 2015. Periodontitis: From microbial immune subversion to systemic inflammation. Nature Reviews Immunology 15 (1): 30–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Eke, P.I., W.S. Borgnakke, and R.J. Genco. 2020. Recent epidemiologic trends in periodontitis in the USA. Periodontol 2000 82 (1): 257–267.

  4. Zong, W.X., J.D. Rabinowitz, and E. White. 2016. Mitochondria and cancer. Molecular Cell 61 (5): 667–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Glancy, B. 2020. Visualizing mitochondrial form and function within the cell. Trends in Molecular Medicine 26 (1): 58–70.

    CAS  PubMed  Google Scholar 

  6. Marchi, S., et al. 2022. Mitochondrial control of inflammation. Nature Reviews Immunology 1–15.

  7. Liu, J., et al. 2018. P53 mediates lipopolysaccharide-induced inflammation in human gingival fibroblasts. Journal of Periodontology 89 (9): 1142–1151.

    CAS  PubMed  Google Scholar 

  8. Liu, J., et al. 2022. Mitochondrial DNA efflux maintained in gingival fibroblasts of patients with periodontitis through ROS/mPTP pathway. Oxidative Medicine and Cellular Longevity 2022: 1000213.

    PubMed  PubMed Central  Google Scholar 

  9. Li, A., et al. 2022. Periodontitis and cognitive impairment in older adults: The mediating role of mitochondrial dysfunction. Journal of Periodontology.

  10. Chen, J., et al. 2021. Sirtuin 3 deficiency exacerbates age-related periodontal disease. Journal of Periodontal Research 56 (6): 1163–1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kam, A.Y.F., et al. 2021. Selective ERBB2 and BCL2 inhibition is synergistic for mitochondrial-mediated apoptosis in MDS and AML cells. Molecular Cancer Research 19 (5): 886–899.

    PubMed  Google Scholar 

  12. Foo, J., et al. 2022. Mitochondria-mediated oxidative stress during viral infection. Trends in Microbiology 30 (7): 679–692.

    CAS  PubMed  Google Scholar 

  13. Sun, H., et al. 2023. Melatonin promoted osteogenesis of human periodontal ligament cells by regulating mitochondrial functions through the translocase of the outer mitochondrial membrane 20. Journal of Periodontal Research 58 (1): 53–69.

    CAS  PubMed  Google Scholar 

  14. Chen, M., et al. 2019. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: A systematic review and meta-analysis. Journal of Clinical Periodontology 46 (6): 608–622.

    CAS  PubMed  Google Scholar 

  15. Hyeon, S., et al. 2013. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radical Biology & Medicine 65: 789–799.

    CAS  Google Scholar 

  16. Liu, J., et al. 2022. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis. Journal of Periodontal Research 57 (1): 94–103.

    CAS  PubMed  Google Scholar 

  17. Darveau, R.P. 2010. Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews Microbiology 8 (7): 481–490.

    CAS  PubMed  Google Scholar 

  18. Shen, K.L., et al. 2022. Effects of artificial intelligence-assisted dental monitoring intervention in patients with periodontitis: A randomized controlled trial. Journal of Clinical Periodontology 49 (10): 988–998.

    CAS  PubMed  Google Scholar 

  19. Vollmer, A., et al. 2022. Associations between periodontitis and COPD: An artificial intelligence-based analysis of NHANES III. Journal of Clinical Medicine 11(23).

  20. Wang, Z., et al. 2023. DNER and GNL2 are differentially m6A methylated in periodontitis in comparison with periodontal health revealed by m6A microarray of human gingival tissue and transcriptomic analysis. Journal of Periodontal Research 58 (3): 529–543.

    CAS  PubMed  Google Scholar 

  21. Kim, H., et al. 2021. Differential DNA methylation and mRNA transcription in gingival tissues in periodontal health and disease. Journal of Clinical Periodontology 48 (9): 1152–1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng, L., et al. 2022. Identification and validation of a classifier based on hub aging-related genes and aging subtypes correlation with immune microenvironment for periodontitis. Frontiers in Immunology 13: 1042484.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, H., et al. 2022. Exploration of cross-talk and pyroptosis-related gene signatures and molecular mechanisms between periodontitis and diabetes mellitus via peripheral blood mononuclear cell microarray data analysis. Cytokine 159: 156014.

    CAS  PubMed  Google Scholar 

  24. Williams, D.W., et al. 2021. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 184 (15): 4090-4104.e15.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Caetano, A.J., et al. 2021. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. Elife 10.

  26. Caetano, A.J., et al. 2023. Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10. Elife 12.

  27. Lundmark, A., et al. 2018. Gene expression profiling of periodontitis-affected gingival tissue by spatial transcriptomics. Science and Reports 8 (1): 9370.

    Google Scholar 

  28. Tonetti, M.S., H. Greenwell, and K.S. Kornman. 2018. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. Journal of Periodontology 89 (Suppl 1): S159-s172.

    PubMed  Google Scholar 

  29. Caton, J.G., et al. 2018. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. Journal of Clinical Periodontology 45 (Suppl 20): S1–s8.

    PubMed  Google Scholar 

  30. Kowaltowski, A.J., A.E. Vercesi, and G. Fiskum. 2000. Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death and Differentiation 7 (10): 903–910.

    CAS  PubMed  Google Scholar 

  31. Chen, H., et al. 2022. Pyroptosis may play a crucial role in modifications of the immune microenvironment in periodontitis. Journal of Periodontal Research 57 (5): 977–990.

    CAS  PubMed  Google Scholar 

  32. Kebschull, M., et al. 2014. Gingival tissue transcriptomes identify distinct periodontitis phenotypes. Journal of Dental Research 93 (5): 459–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Abe, D., et al. 2011. Altered gene expression in leukocyte transendothelial migration and cell communication pathways in periodontitis-affected gingival tissues. Journal of Periodontal Research 46 (3): 345–353.

    CAS  PubMed  Google Scholar 

  34. Demmer, R.T., et al. 2008. Transcriptomes in healthy and diseased gingival tissues. Journal of Periodontology 79 (11): 2112–2124.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Y., et al. 2020. Long non-coding RNA and mRNA expression profiles in peri-implantitis vs periodontitis. Journal of Periodontal Research 55 (3): 342–353.

    CAS  PubMed  Google Scholar 

  36. Taminau, J., et al. 2012. Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC Bioinformatics 13 (1): 335.

    PubMed  PubMed Central  Google Scholar 

  37. Chen, C., et al. 2011. Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. PLoS ONE 6 (2): e17238.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stuart, T., et al. 2019. Comprehensive Integration of Single-Cell Data. Cell 177 (7): 1888–1902.e21.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Aran, D., A.P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R.P. Naikawadi, P.J. Wolters, A.R. Abate, A.J. Butte, and M. Bhattacharya. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology 20 (2): 163–172. https://doi.org/10.1038/s41590-018-0276-y. Epub 2019 Jan 14. PMID: 30643263; PMCID: PMC6340744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Monaco, G., et al. 2019. RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Reports 26 (6): 1627-1640.e7.

    CAS  PubMed  Google Scholar 

  41. Rath, S., et al. 2021. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Research 49 (D1): D1541–d1547.

  42. Shen, W., et al. 2022. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. Imeta 1 (3): e36.

  43. Tolles, J., and W.J. Meurer. 2016. Logistic regression: Relating patient characteristics to outcomes. JAMA 316 (5): 533–534.

    PubMed  Google Scholar 

  44. Hänzelmann, S., R. Castelo, and J. Guinney. 2013. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14: 7.

    PubMed  PubMed Central  Google Scholar 

  45. Sanz, H., et al. 2018. SVM-RFE: Selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics 19 (1): 432.

    PubMed  PubMed Central  Google Scholar 

  46. Li, W., et al. 2019. Gene expression value prediction based on XGBoost algorithm. Frontiers in Genetics 10: 1077.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, X., and H. Ishwaran. 2012. Random forests for genomic data analysis. Genomics 99 (6): 323–329.

    CAS  PubMed  Google Scholar 

  48. Beck, M.W. 2018. NeuralNetTools: Visualization and analysis tools for neural networks. Journal of Statistical Software 85 (11): 1–20.

    PubMed  PubMed Central  Google Scholar 

  49. Nachid, M., and M. Boussiala. 2021. Machine Learning_Iris_caret~Package. 

  50. Vickers, A.J., and E.B. Elkin. 2006. Decision curve analysis: A novel method for evaluating prediction models. Medical Decision Making 26 (6): 565–574.

    PubMed  PubMed Central  Google Scholar 

  51. Newman, A.M., et al. 2019. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology 37 (7): 773–782.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu, G., et al. 2012. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 16 (5): 284–287.

    CAS  PubMed  Google Scholar 

  53. Singh, L.N., et al. 2021. MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data. PLoS Computational Biology 17 (11): e1009594.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Langfelder, P., and S. Horvath. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.

    PubMed  PubMed Central  Google Scholar 

  55. Wilkerson, M.D., and D.N. Hayes. 2010. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 26 (12): 1572–1573.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, B., et al. 2020. m(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Molecular Cancer 19 (1): 53.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chan-Seng-Yue, M., et al. 2020. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nature Genetics 52 (2): 231–240.

    CAS  PubMed  Google Scholar 

  58. Zindel, J., and P. Kubes. 2020. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annual Review of Pathology: Mechanisms of Disease 15: 493–518.

    CAS  Google Scholar 

  59. Grazioli, S., and J. Pugin. 2018. Mitochondrial damage-associated molecular patterns: From inflammatory signaling to human diseases. Frontiers in Immunology 9: 832.

    PubMed  PubMed Central  Google Scholar 

  60. Lin, M.M., et al. 2022. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacologica Sinica.

  61. Scazzone, C., et al. 2021. Vitamin D and Genetic Susceptibility to Multiple Sclerosis. Biochemical Genetics 59 (1): 1–30.

    CAS  PubMed  Google Scholar 

  62. Tuckey, R.C., et al. 2023. Analysis of the ability of vitamin D3-metabolizing cytochromes P450 to act on vitamin D3 sulfate and 25-hydroxyvitamin D3 3-sulfate. Journal of Steroid Biochemistry and Molecular Biology 227: 106229.

    CAS  PubMed  Google Scholar 

  63. Al-Zahrani, M.S. 2006. Increased intake of dairy products is related to lower periodontitis prevalence. Journal of Periodontology 77 (2): 289–294.

    PubMed  Google Scholar 

  64. Zihni Korkmaz, M., et al. 2022. The effects of vitamin D deficiency on mandibular bone structure: a retrospective radiological study. Oral Radiology 1–8.

  65. Hu, Z., F. Zhou, and H. Xu. 2022. Circulating vitamin C and D concentrations and risk of dental caries and periodontitis: A Mendelian randomization study. Journal of Clinical Periodontology 49 (4): 335–344.

    CAS  PubMed  Google Scholar 

  66. Shahijanian, F., et al. 2014. The CYP27B1 variant associated with an increased risk of autoimmune disease is underexpressed in tolerizing dendritic cells. Human Molecular Genetics 23 (6): 1425–1434.

    CAS  PubMed  Google Scholar 

  67. Kundu, R., et al. 2014. Regulation of CYP27B1 and CYP24A1 hydroxylases limits cell-autonomous activation of vitamin D in dendritic cells. European Journal of Immunology 44 (6): 1781–1790.

    CAS  PubMed  Google Scholar 

  68. Brenner, C. 2002. Hint, Fhit, and GalT: Function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 41 (29): 9003–9014.

    CAS  PubMed  Google Scholar 

  69. Wang, W., et al. 2013. All-trans retinoic acid protects hepatocellular carcinoma cells against serum-starvation-induced cell death by upregulating collagen 8A2. FEBS Journal 280 (5): 1308–1319.

    CAS  PubMed  Google Scholar 

  70. Derakhshani, A., et al. 2021. The role of hemoglobin subunit delta in the immunopathy of multiple sclerosis: Mitochondria matters. Frontiers in Immunology 12: 709173.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Vercellino, I., and L.A. Sazanov. 2022. The assembly, regulation and function of the mitochondrial respiratory chain. Nature Reviews Molecular Cell Biology 23 (2): 141–161.

    CAS  PubMed  Google Scholar 

  72. Ledderose, C., et al. 2015. Novel method for real-time monitoring of ATP release reveals multiple phases of autocrine purinergic signalling during immune cell activation. Acta Psychologica 213 (2): 334–345.

    CAS  Google Scholar 

  73. González-Arzola, K., et al. 2019. New moonlighting functions of mitochondrial cytochrome c in the cytoplasm and nucleus. FEBS Letters 593 (22): 3101–3119.

    PubMed  Google Scholar 

  74. Santucci, R., et al. 2019. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. International Journal of Biological Macromolecules 136: 1237–1246.

    CAS  PubMed  Google Scholar 

  75. Barrera, M.J., et al. 2021. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren’s syndrome. Autoimmunity Reviews 20 (8): 102867.

    CAS  PubMed  Google Scholar 

  76. Gogvadze, V., S. Orrenius, and B. Zhivotovsky. 2006. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochimica et Biophysica Acta 1757 (5–6): 639–647.

    CAS  PubMed  Google Scholar 

  77. Jiang, X., and X. Wang. 2004. Cytochrome C-mediated apoptosis. Annual Review of Biochemistry 73: 87–106.

    CAS  PubMed  Google Scholar 

  78. Liu, Q., et al. 2022. Inhibition of TRPA1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via PERK/eIF2α/ATF-4/CHOP signal pathway. Oxidative Medicine and Cellular Longevity 2022: 4107915.

    PubMed  PubMed Central  Google Scholar 

  79. Lucas, H., et al. 2010. Inhibition of apoptosis in periodontitis. Journal of Dental Research 89 (1): 29–33.

    CAS  PubMed  Google Scholar 

  80. Quiles, J.M., and B. Gustafsson Å. 2022. The role of mitochondrial fission in cardiovascular health and disease. Nature Reviews Cardiology.

  81. Gillette, M.A., et al. 2020. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182 (1): 200-225.e35.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kovalev, E.V., and S.A. Gusev. 1988. Age-related changes in the ultrastructural organization of the human gingival epithelium. Arkhiv Anatomii, Gistologii i Émbriologii 94 (4): 44–47.

    CAS  PubMed  Google Scholar 

  83. Varela-Lopez, A., et al. 2016. Coenzyme Q protects against age-related alveolar bone loss associated to n-6 polyunsaturated fatty acid rich-diets by modulating mitochondrial mechanisms. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 71 (5): 593–600.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We would like to exert a compelling appreciation for the GEO projects. We thank Dr. Jianming Zeng (University of Macau), Lao Junjun, Biomamba, and all members of their bioinformatics team, biotrainee, for generously sharing their experience and codes.

Funding

This work was financially supported by the National Natural Science Foundation of China [grant number 81700982]; the Chongqing Medical Reserve Talent Studio for Young People [grant number ZQNYXGDRCGZS2019004].

Author information

Authors and Affiliations

Authors

Contributions

Xiaonan Zhang: supervision, project administration, funding acquisition. Hang Chen: conceptualization, methodology, software, investigation, formal analysis, visualization, validation, writing—original draft. Limin Peng: methodology, visualization, validation, resources, writing—review and editing. Zhenxiang Wang: data curation, validation, writing—review and editing. Yujuan He: writing—review and editing.

Corresponding author

Correspondence to Xiaonan Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

This study was conducted in accordance with the principles outlined in the Declaration of Helsinki and was approved by the Ethics Committee of the Stomatological Hospital of Chongqing Medical University (Approval No: 2020 LSNo.79).

Consent for Publication

All authors have approved the manuscript for submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10753_2023_1851_MOESM1_ESM.pdf

Supplementary Table 1: The detail of clinical information on 24 patients. Supplementary Table 2: Inclusion criteria and exclusion criteria for clinical participants. Supplementary Table 3: Characteristics of the bulk tissue transcriptomic datasets included in the study. Supplementary Table 4: Characteristics of the single-cell transcriptomic datasets included in the study. Supplementary Table 5: The primer sequences for qRT-PCR. Supplementary Table 6: The output results of the neural network model. Supplementary Fig. 1: The WGCNA results. (PDF 365 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Peng, L., Wang, Z. et al. Integrated Machine Learning and Bioinformatic Analyses Constructed a Network Between Mitochondrial Dysfunction and Immune Microenvironment of Periodontitis. Inflammation 46, 1932–1951 (2023). https://doi.org/10.1007/s10753-023-01851-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01851-0

KEY WORDS

Navigation