Skip to main content
Log in

Circular RNA CircDHRS3 Aggravates IL-1β-induced ECM Degradation, Apoptosis, and Inflammatory Response via Mediating MECP2 Expression

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Previous studies have reported that circular RNA hsa_circ_0010024 (circDHRS3), microRNA (miR)-193a-3p, and Methyl CpG binding protein 2 (MECP2) are unconventionally expressed in osteoarthritis (OA) cartilage samples. However, the regulatory mechanisms among circDHRS3, miR-193a-3p, and MECP2 in OA pathogenesis are unclear. Changes of circDHRS3, miR-193a-3p, and MECP2 mRNA were detected by qRT-PCR. Several protein levels were evaluated using western blotting. Cell proliferation was analyzed by 5-Ethynyl-2’-deoxyuridine (EdU) and cell counting assays. Cell apoptosis was determined by flow cytometry assay. Detection of pro-inflammatory cytokines was conducted using ELISA. The relationship between circDHRS3 or MECP2 and miR-193a-3p was validated by dual-luciferase reporter assay. We verified that circDHRS3 and MECP2 were overexpressed in OA cartilage samples, whereas miR-193a-3p was downregulated. CircDHRS3 silencing weakened IL-1β-induced chondrocyte cartilage extracellular matrix (ECM) degradation, apoptosis, and inflammatory response. CircDHRS3 adsorbed miR-193a-3p to modulate MECP2 expression. Also, silencing of miR-193a-3p impaired circDHRS3 silencing-mediated suppression on IL-1β-induced chondrocyte injury. Also, MECP2 overexpression alleviated miR-193a-3p mimic-mediated inhibition on IL-1β-prompted chondrocyte injury. CircDHRS3 silencing reduced MECP2 expression via sponging miR-193a-3p, thereby weakening IL-1β-induced chondrocyte ECM degradation, apoptosis, and inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Loeser, R.F., S.R. Goldring, C.R. Scanzello, and M.B. Goldring. 2012. Osteoarthritis: A disease of the joint as an organ. Arthritis and Rheumatism 64: 1697–1707.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hwang, H.S., and H.A. Kim. 2015. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. International Journal of Molecular Sciences 16: 26035–26054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Conaghan, P.G., A.D. Cook, J.A. Hamilton, and P.P. Tak. 2019. Therapeutic options for targeting inflammatory osteoarthritis pain. Nature Reviews Rheumatology 15: 355–363.

    Article  PubMed  Google Scholar 

  4. Berenbaum, F., T.M. Griffin, and R. Liu-Bryan. 2017. Review: Metabolic Regulation of Inflammation in Osteoarthritis. Arthritis and Rheumatism 69: 9–21.

    Article  Google Scholar 

  5. Wang, T., and C. He. 2018. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine & Growth Factor Reviews 44: 38–50.

    Article  Google Scholar 

  6. Krasnokutsky, S., J. Samuels, and S.B. Abramson. 2007. Osteoarthritis in 2007. Bulletin of the NYU Hospital for Joint Diseases 65: 222–228.

    PubMed  Google Scholar 

  7. Chen, L.-L., and L. Yang. 2015. Regulation of circRNA biogenesis. RNA Biology 12: 381–388.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Z., T. Yang, and J. Xiao. 2018. Circular RNAs: Promising Biomarkers for Human Diseases. eBioMedicine 34: 267–274.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kristensen, L.S., M.S. Andersen, L.V.W. Stagsted, K.K. Ebbesen, T.B. Hansen, and J. Kjems. 2019. The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics 20: 675–691.

    Article  CAS  PubMed  Google Scholar 

  10. Yu, C.X., and S. Sun. 2018. An Emerging Role for Circular RNAs in Osteoarthritis. Yonsei Medical Journal 59: 349–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, Q., Z.H. Yuan, X.B. Ma, and X.H. Tang. 2020. Low expression of CircRNA HIPK3 promotes osteoarthritis chondrocyte apoptosis by serving as a sponge of miR-124 to regulate SOX8. European Review for Medical and Pharmacological Sciences 24: 7937–7945.

    CAS  PubMed  Google Scholar 

  12. Xiao, K., Z. Xia, B. Feng, Y. Bian, Y. Fan, Z. Li, Z. Wu, G. Qiu, and X. Weng. 2019. Circular RNA expression profile of knee condyle in osteoarthritis by illumina HiSeq platform. Journal of Cellular Biochemistry 120: 17500–17511.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, G., T. Liu, B. Yu, B. Wang and Q. Peng. 2020. CircRNA-UBE2G1 regulates LPS-induced osteoarthritis through miR-373/HIF-1a axis. Cell Cycle (Georgetown, Tex.) 19:1696–1705.

  14. Jiang, R., H. Gao, F. Cong, W. Zhang, T. Song, and Z. Yu. 2021. Circ_DHRS3 positively regulates GREM1 expression by competitively targeting miR-183-5p to modulate IL-1β-administered chondrocyte proliferation, apoptosis and ECM degradation. International Immunopharmacology 91.

    Article  CAS  PubMed  Google Scholar 

  15. Lu, T.X., and M.E. Rothenberg. 2018. MicroRNA. The Journal of Allergy and Clinical Immunology 141: 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  16. Swingler, T.E., L. Niu, P. Smith, P. Paddy, L. Le, M.J. Barter, D.A. Young, and I.M. Clark. 2019. The function of microRNAs in cartilage and osteoarthritis. Clinical and Experimental Rheumatology 37 (Suppl 120): 40–47.

    PubMed  Google Scholar 

  17. Zhong, Y., Y. Du, X. Yang, Y. Mo, C. Fan, F. Xiong, D. Ren, X. Ye, C. Li, Y. Wang, F. Wei, C. Guo, X. Wu, X. Li, Y. Li, G. Li, Z. Zeng, and W. Xiong. 2018. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Molecular Cancer 17: 79.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yi, Y., J. Chen, C. Jiao, J. Zhong, Z. Song, X. Yu, X. Lu, and B. Lin. 2016. Upregulated miR-193a-3p as an oncogene in esophageal squamous cell carcinoma regulating cellular proliferation, migration and apoptosis. Oncology Letters 12: 4779–4784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, H.M., C. Wang, Z. Yuan, G.L. Chen, T. Ye, and B.W. Yang. 2019. LncRNA NEAT1 promotes the tumorigenesis of colorectal cancer by sponging miR-193a-3p. Cell Proliferation 52.

    Article  PubMed  Google Scholar 

  20. Nong, W. 2019. Long non-coding RNA NEAT1/miR-193a-3p regulates LPS-induced apoptosis and inflammatory injury in WI-38 cells through TLR4/NF-κB signaling. American Journal of Translational Research 11: 5944–5955.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, F., X. Liu, Y. Yang, Z. Sun, S. Deng, Z. Jiang, W. Li, and F. Wu. 2020. NEAT1/miR-193a-3p/SOX5 axis regulates cartilage matrix degradation in human osteoarthritis. Cell Biology International 44: 947–957.

    Article  CAS  PubMed  Google Scholar 

  22. Gigek, C.O., E.S. Chen, and M.A. Smith. 2016. Methyl-CpG-Binding Protein (MBD) Family: Epigenomic Read-Outs Functions and Roles in Tumorigenesis and Psychiatric Diseases. Journal of Cellular Biochemistry 117: 29–38.

    Article  CAS  PubMed  Google Scholar 

  23. D’Mello, S.R., 3rd. 2021. MECP2 and the biology of MECP2 duplication syndrome. Journal of Neurochemistry 159: 29–60.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, J., M. Xiong, Y. Fan, C. Liu, Q. Wang, D. Yang, Y. Yuan, Y. Huang, S. Wang, Y. Zhang, S. Niu, J. Yue, H. Su, C. Zhang, H. Chen, L. Zheng, and K. Huang. 2022. Mecp2 protects kidney from ischemia-reperfusion injury through transcriptional repressing IL-6/STAT3 signaling. Theranostics 12: 3896–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zalosnik, M.I., M.C. Fabio, M.L. Bertoldi, C.N. Castañares, and A.L. Degano. 2021. MeCP2 deficiency exacerbates the neuroinflammatory setting and autoreactive response during an autoimmune challenge. Science and Reports 11: 10997.

    Article  CAS  Google Scholar 

  26. Xiang, Z., Q. Zhou, M. Hu, and Y.Y. Sanders. 2020. MeCP2 epigenetically regulates alpha-smooth muscle actin in human lung fibroblasts. Journal of Cellular Biochemistry 121: 3616–3625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cobb, B.L., Y. Fei, R. Jonsson, A.I. Bolstad, J.G. Brun, M. Rischmueller, S.E. Lester, T. Witte, G. Illei, M. Brennan, S. Bowman, K.L. Moser, J.B. Harley, and A.H. Sawalha. 2010. Genetic association between methyl-CpG binding protein 2 (MECP2) and primary Sjogren’s syndrome. Annals of the Rheumatic Diseases 69: 1731–1732.

    Article  CAS  PubMed  Google Scholar 

  28. Mahmoudi, M., E. Hamzeh, S. Aslani, V. Ziaee, S. Poursani, and N. Rezaei. 2018. Single nucleotide polymorphism of Methyl-CpG-binding protein 2 gene associates with juvenile idiopathic arthritis. Clinical Rheumatology 37: 375–381.

    Article  PubMed  Google Scholar 

  29. Song, J., D. Kim, C.H. Chun, and E.J. Jin. 2015. miR-370 and miR-373 regulate the pathogenesis of osteoarthritis by modulating one-carbon metabolism via SHMT-2 and MECP-2, respectively. Aging Cell 14: 826–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng, S., Z. Nie, J. Cao, and H. Peng. 2023. Circ_0136474 promotes the progression of osteoarthritis by sponging mir-140-3p and upregulating MECP2. Journal of Molecular Histology 54: 1–12.

    Article  CAS  PubMed  Google Scholar 

  31. Miao, C.G., D. Qin, C.L. Du, H. Ye, W.J. Shi, Y.Y. Xiong, X.L. Zhang, H. Yu, J.F. Dou, S.T. Ma, M.S. Qin, H.Z. Liu, Y.X. Fang, G.L. Zhou, J.Z. Chen, X. He, C. Huang, Y. Huang, B. Zhang, T.W. Song, and J. Li. 2015. DNMT1 activates the canonical Wnt signaling in rheumatoid arthritis model rats via a crucial functional crosstalk between miR-152 and the DNMT1, MeCP2. International Immunopharmacology 28: 344–353.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Y., H. Zhu, X. Yan, H. Gu, Z. Gu, and F. Liu. 2017. Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes. Biochemical and Biophysical Research Communications 491: 368–373.

    Article  CAS  PubMed  Google Scholar 

  33. Fernandes, J.C., J. Martel-Pelletier, and J.-P. Pelletier. 2002. The role of cytokines in osteoarthritis pathophysiology. Biorheology 39: 237–246.

    CAS  PubMed  Google Scholar 

  34. Zhou, K., L. Hu, W. Liao, D. Yin, and F. Rui. 2016. Coptisine Prevented IL-β-Induced Expression of Inflammatory Mediators in Chondrocytes. Inflammation 39: 1558–1565.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, X., J. Fan, X. Ding, Y. Sun, Z. Cui, and W. Liu. 2019. Tanshinone I Inhibits IL-1β-Induced Apoptosis, Inflammation And Extracellular Matrix Degradation In Chondrocytes CHON-001 Cells And Attenuates Murine Osteoarthritis. Drug Design, Development and Therapy 13: 3559–3568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma, H.R., W.B. Mu, K.Y. Zhang, H.K. Zhou, R.D. Jiang, and L. Cao. 2020. CircVCAN regulates the proliferation and apoptosis of osteoarthritis chondrocyte through NF-κB signaling pathway. European Review for Medical and Pharmacological Sciences 24: 6517–6525.

    PubMed  Google Scholar 

  37. Chen, C., P. Yin, S. Hu, X. Sun, and B. Li. 2020. Circular RNA-9119 protects IL-1β-treated chondrocytes from apoptosis in an osteoarthritis cell model by intercepting the microRNA-26a/PTEN axis. Life Sciences 256.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, X., L. Jiang, G. Fan, H. Yang, L. Wu, Y. Huang, N. Xu, and J. Li. 2019. Role of the ciRS-7/miR-7 axis in the regulation of proliferation, apoptosis and inflammation of chondrocytes induced by IL-1β. International Immunopharmacology 71: 233–240.

    Article  CAS  PubMed  Google Scholar 

  39. Ji, M.L., X.J. Zhang, P.L. Shi, J. Lu, S.Z. Wang, Q. Chang, H. Chen, and C. Wang. 2016. Downregulation of microRNA-193a-3p is involved in invertebral disc degeneration by targeting MMP14. Journal of Molecular Medicine (Berlin, Germany) 94: 457–468.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xiao Ouyang designed and supervised the study. Xiao Ouyang and Li Yu conducted the experiments and drafted the manuscript. Feng Xin and Xiaowei Yang collected and analyzed the data. Xingyong Liu contributed the methodology. Songming Tong operated the software and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiao Ouyang.

Ethics declarations

Ethics Approval and Consent to Participate

The research was approved by the Ethics Committee of Xuzhou Third People’s Hospital, Affiliated Xuzhou Hospital of Jiangsu University and follows the tenets of the Declaration of Helsinki.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, X., Ding, Y., Yu, L. et al. Circular RNA CircDHRS3 Aggravates IL-1β-induced ECM Degradation, Apoptosis, and Inflammatory Response via Mediating MECP2 Expression. Inflammation 46, 1670–1683 (2023). https://doi.org/10.1007/s10753-023-01832-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01832-3

KEY WORDS

Navigation