Skip to main content

Advertisement

Log in

NF-κB-Inducing Kinase Provokes Insulin Resistance in Skeletal Muscle of Obese Mice

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Skeletal muscle is crucial for preserving glucose homeostasis. Insulin resistance and abnormalities in glucose metabolism result from a range of pathogenic factors attacking skeletal muscle in obese individuals. To relieve insulin resistance and restore glucose homeostasis, blocking the cell signaling pathways induced by those pathogenic factors seems an attractive strategy. It has been discovered that insulin sensitivity in obese people is inversely linked with the activity of NF-κB inducing kinase (NIK) in skeletal muscle. In order to evaluate NIK’s pathological consequences, mechanism of action, and therapeutic values, an obese mouse model reproduced by feeding a high-fat diet was treated with a NIK inhibitor, B022. C2C12 myoblasts overexpressing NIK were utilized to assess insulin signaling and glucose uptake. B022 thus prevented high-fat diet-induced NIK activation and insulin desensitization in skeletal muscle. The insulin signaling in C2C12 myoblasts was compromised by the upregulation of NIK brought on by oxidative stress, lipid deposition, inflammation, or adenoviral vector. This inhibition of insulin action is mostly due to an inhibitory serine phosphorylation of IRS1 caused by ERK, JNK, and PKC that were activated by NIK. In summary, NIK integrates signals from several pathogenic factors to impair insulin signaling by igniting a number of IRS1-inhibiting kinases, and it also has significant therapeutic potential for treating insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

All data generated or analyzed in the present study are included in this paper.

Abbreviations

NIK:

NF-κB inducing kinase

T2DM:

Type 2 diabetes mellitus

ERK:

Extracellular signal-regulated kinases

JNK:

Jun kinase

PKC:

Protein kinase C

IRS1:

Insulin receptor substrate 1

HFD:

High-fat diet

ELISA:

Enzyme-linked immunosorbent assay

GTT:

Glucose tolerance test

ITT:

Insulin tolerance test

TAG:

Triglyceride

DAG:

Diacylglycerol

MDA:

Malondialdehyde

8-OHdG:

8-Hydroxy-2-deoxyguanosine

TNFα:

Tumor necrosis factor α

DMEM:

Dulbecco's modified Eagle's Medium

2-NBDG:

2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose

H2O2:

Hydrogen peroxide

PA:

Palmitate

IR:

Insulin receptor

PI3K:

Phosphatidylinositide 3-kinase

PDK1:

Phosphoinositide-dependent protein kinase 1

PKB/Akt:

Protein kinase B

GLUT4:

Glucose transporter 4

S6K:

Ribosomal protein S6 kinase

IKKα:

Inhibitory B kinase α

IKKβ:

Inhibitory B kinase β

mTOR:

Mammalian target of rapamycin

References

  1. Draznin, B., V.R. Aroda, G. Bakris, G. Benson, F.M. Brown, R. Freeman, J. Green, E. Huang, D. Isaacs, S. Kahan, J. Leon, S.K. Lyons, A.L. Peters, P. Prahalad, J. Reusch, D. Young-Hyman, S. Das, and M. Kosiborod. 2022. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care 45 (Suppl 1): S17–S38. https://doi.org/10.2337/dc22-S002.

    Article  Google Scholar 

  2. Cole, J.B., and J.C. Florez. 2020. Genetics of diabetes mellitus and diabetes complications. Nature Reviews Nephrology 16 (7): 377–390. https://doi.org/10.1038/s41581-020-0278-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A.A. Motala, K. Ogurtsova, J.E. Shaw, D. Bright, and R. Williams. 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice 157: 107843. https://doi.org/10.1016/j.diabres.2019.107843.

    Article  PubMed  Google Scholar 

  4. Saeedi, P., P. Salpea, S. Karuranga, I. Petersohn, B. Malanda, E.W. Gregg, N. Unwin, S.H. Wild, and R. Williams. 2020. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice 162: 108086. https://doi.org/10.1016/j.diabres.2020.108086.

    Article  PubMed  Google Scholar 

  5. DeFronzo, R.A., R. Gunnarsson, O. Björkman, M. Olsson, and J. Wahren. 1985. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. The Journal of Clinical Investigation 76 (1): 149–155. https://doi.org/10.1172/JCI111938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Merz, K.E., and D.C. Thurmond. 2020. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Comprehensive Physiology 10 (3): 785–809. https://doi.org/10.1002/cphy.c190029.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nisr, R.B., D.S. Shah, I.G. Ganley, and H.S. Hundal. 2019. Proinflammatory NFkB signalling promotes mitochondrial dysfunction in skeletal muscle in response to cellular fuel overloading. Cellular and Molecular Life Sciences 76 (24): 4887–4904. https://doi.org/10.1007/s00018-019-03148-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hotamisligil, G.S. 2017. Inflammation, metaflammation and immunometabolic disorders. Nature 542 (7640): 177–185. https://doi.org/10.1038/nature21363.

    Article  CAS  PubMed  Google Scholar 

  9. Sun, S.C. 2011. Non-canonical NF-κB signaling pathway. Cell Research 21 (1): 71–85. https://doi.org/10.1038/cr.2010.177.

    Article  CAS  PubMed  Google Scholar 

  10. Choudhary, S., S. Sinha, Y. Zhao, S. Banerjee, P. Sathyanarayana, S. Shahani, V. Sherman, R.G. Tilton, and M. Bajaj. 2011. NF-kappaB-inducing kinase (NIK) mediates skeletal muscle insulin resistance: blockade by adiponectin. Endocrinology 152 (10): 3622–3627. https://doi.org/10.1210/en.2011-1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niedernhofer, L.J., J.S. Daniels, C.A. Rouzer, R.E. Greene, and L.J. Marnett. 2003. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. Journal of Biological Chemistry 278 (33): 31426–31433. https://doi.org/10.1074/jbc.M212549200.

    Article  CAS  PubMed  Google Scholar 

  12. Tang, C., P. Liu, Y. Zhou, B. Jiang, Y. Song, and L. Sheng. 2019. Sirt6 deletion in hepatocytes increases insulin sensitivity of female mice by enhancing ERα expression. Journal of Cellular Physiology 234 (10): 18615–18625. https://doi.org/10.1002/jcp.28500.

    Article  CAS  PubMed  Google Scholar 

  13. Kasai, H. 1997. Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research 387 (3): 147–163. https://doi.org/10.1016/s1383-5742(97)00035-5.

    Article  CAS  PubMed  Google Scholar 

  14. Cooney, G.J., A.L. Thompson, S.M. Furler, J. Ye, and E.W. Kraegen. 2002. Muscle long-chain acyl CoA esters and insulin resistance. Annals of the New York Academy of Sciences 967: 196–207. https://doi.org/10.1111/j.1749-6632.2002.tb04276.x.

    Article  CAS  PubMed  Google Scholar 

  15. Hotamisligil, G.S., N.S. Shargill, and B.M. Spiegelman. 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259 (5091): 87–91. https://doi.org/10.1126/science.7678183.

    Article  CAS  PubMed  Google Scholar 

  16. Turinsky, J., D.M. O’Sullivan, and B.P. Bayly. 1990. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. Journal of Biological Chemistry 265 (28): 16880–16885.

    Article  CAS  PubMed  Google Scholar 

  17. Manning, B.D., and A. Toker. 2017. AKT/PKB signaling: navigating the network. Cell 169 (3): 381–405. https://doi.org/10.1016/j.cell.2017.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saltiel, A.R., and C.R. Kahn. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414 (6865): 799–806. https://doi.org/10.1038/414799a.

    Article  CAS  PubMed  Google Scholar 

  19. Beg, M., N. Abdullah, F.S. Thowfeik, N.K. Altorki, and T.E. McGraw. 2017. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake. Elife 6: e26896. https://doi.org/10.7554/eLife.26896.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y., J. Viscarra, S.J. Kim, and H.S. Sul. 2015. Transcriptional regulation of hepatic lipogenesis. Nature Reviews Molecular Cell Biology 16 (11): 678–689. https://doi.org/10.1038/nrm4074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenessey, A., and K. Ojamaa. 2006. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. Journal of Biological Chemistry 281 (30): 20666–20672. https://doi.org/10.1074/jbc.M512671200.

    Article  CAS  PubMed  Google Scholar 

  22. Shum, M., K. Bellmann, P. St-Pierre, and A. Marette. 2016. Pharmacological inhibition of S6K1 increases glucose metabolism and Akt signalling in vitro and in diet-induced obese mice. Diabetologia 59 (3): 592–603. https://doi.org/10.1007/s00125-015-3839-6.

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y., T.J. Soos, X. Li, J. Wu, M. Degennaro, X. Sun, D.R. Littman, M.J. Birnbaum, and R.D. Polakiewicz. 2004. Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). Journal of Biological Chemistry 279 (44): 45304–45307. https://doi.org/10.1074/jbc.C400186200.

    Article  CAS  PubMed  Google Scholar 

  24. Gual, P., Y. Le Marchand-Brustel, and J.F. Tanti. 2005. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87 (1): 99–109. https://doi.org/10.1016/j.biochi.2004.10.019.

    Article  CAS  PubMed  Google Scholar 

  25. Tanti, J.F., and J. Jager. 2009. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Current Opinion in Pharmacology 9 (6): 753–762. https://doi.org/10.1016/j.coph.2009.07.004.

    Article  CAS  PubMed  Google Scholar 

  26. Huang, C., A.C. Thirone, X. Huang, and A. Klip. 2005. Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in l6 myotubes. Journal of Biological Chemistry 280 (19): 19426–19435. https://doi.org/10.1074/jbc.M412317200.

    Article  CAS  PubMed  Google Scholar 

  27. Solinas, G., W. Naugler, F. Galimi, M.S. Lee, and M. Karin. 2006. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates. Proceedings of the National Academy of Sciences 103 (44): 16454–16459. https://doi.org/10.1073/pnas.0607626103.

    Article  CAS  Google Scholar 

  28. DeFronzo, R.A. 1988. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37 (6): 667–687. https://doi.org/10.2337/diab.37.6.667.

    Article  CAS  PubMed  Google Scholar 

  29. Da, S.R.S., N. Nayak, A.M. Caymo, and J.W. Gordon. 2020. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiological Reports 8 (19): e14607. https://doi.org/10.14814/phy2.14607.

    Article  Google Scholar 

  30. Claudio, E., K. Brown, S. Park, H. Wang, and U. Siebenlist. 2002. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nature Immunology 3 (10): 958–965. https://doi.org/10.1038/ni842.

    Article  CAS  PubMed  Google Scholar 

  31. Coope, H.J., P.G. Atkinson, B. Huhse, M. Belich, J. Janzen, M.J. Holman, G.G. Klaus, L.H. Johnston, and S.C. Ley. 2002. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO Journal 21 (20): 5375–5385. https://doi.org/10.1093/emboj/cdf542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dejardin, E., N.M. Droin, M. Delhase, E. Haas, Y. Cao, C. Makris, Z.W. Li, M. Karin, C.F. Ware, and D.R. Green. 2002. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17 (4): 525–535. https://doi.org/10.1016/s1074-7613(02)00423-5.

    Article  CAS  PubMed  Google Scholar 

  33. Malinin, N.L., M.P. Boldin, A.V. Kovalenko, and D. Wallach. 1997. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385 (6616): 540–544. https://doi.org/10.1038/385540a0.

    Article  CAS  PubMed  Google Scholar 

  34. Bonizzi, G., M. Bebien, D.C. Otero, K.E. Johnson-Vroom, Y. Cao, D. Vu, A.G. Jegga, B.J. Aronow, G. Ghosh, R.C. Rickert, and M. Karin. 2004. Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. EMBO Journal 23 (21): 4202–4210. https://doi.org/10.1038/sj.emboj.7600391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheng, L., Y. Zhou, Z. Chen, D. Ren, K.W. Cho, L. Jiang, H. Shen, Y. Sasaki, and L. Rui. 2012. NF-κB–inducing kinase (NIK) promotes hyperglycemia and glucose intolerance in obesity by augmenting glucagon action. Nature Medicine 18 (6): 943–949. https://doi.org/10.1038/nm.2756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y., L. Sheng, Y. Xiong, H. Shen, Y. Liu, and L. Rui. 2017. Liver NF-κB-inducing kinase promotes liver steatosis and glucose counterregulation in male mice with obesity. Endocrinology 158 (5): 1207–1216. https://doi.org/10.1210/en.2016-1582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Oliveira, D.S.A., Z.B. de Oliveira, V. Miola, S.M. Barbalho, B.P. Santos, U. Flato, C. Detregiachi, D.V. Buchaim, R.L. Buchaim, R.J. Tofano, C.G. Mendes, V. Tofano, and S.H.J. Dos. 2021. Adipokines, myokines, and hepatokines: crosstalk and metabolic repercussions. International Journal of Molecular Sciences 22 (5): 2639. https://doi.org/10.3390/ijms22052639.

    Article  CAS  Google Scholar 

  38. Röhl, M., M. Pasparakis, S. Baudler, J. Baumgartl, D. Gautam, M. Huth, R. De Lorenzi, W. Krone, K. Rajewsky, and J.C. Brüning. 2004. Conditional disruption of IkappaB kinase 2 fails to prevent obesity-induced insulin resistance. The Journal of Clinical Investigation 113 (3): 474–481. https://doi.org/10.1172/JCI18712.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (82170877), Science and Technology Research Project of Henan Province (222102310105), Xinxiang key Laboratory for Epigenetic Molecular Pharmacology, and Shenzhen Science and Technology Innovation Committee (JCYJ20180302173605034).

Author information

Authors and Affiliations

Authors

Contributions

Liang Sheng, Guangxu Xu, Xinhui Kou, and Yu Song initiated the research idea, performed experimental design and got funding support. Xueqin Chen, Zhuoqun Liu, Wenjun Liu performed most of the experiments. Yu Song and Liang Sheng analyzed the data. Shu Wang and Liang Sheng wrote the manuscript. Guangxu Xu and Xinhui Kou critically reviewed the manuscript. Ran Jiang and Kua Hu did a series of pre-experiments.

Corresponding authors

Correspondence to Liang Sheng, Guangxu Xu, Xinhui Kou or Yu Song.

Ethics declarations

Ethics Approval and Consent to Participate

All animal care and experimental procedures were performed in accordance with the guidelines for animal care of Jiangsu province and were approved by the National Experimental Animal Expert Committee.

Consent for Publication

No human experiment was carried out in this study.

Competing Interests

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xueqin Chen, Zhuoqun Liu, and Wenjun Liu contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, Z., Liu, W. et al. NF-κB-Inducing Kinase Provokes Insulin Resistance in Skeletal Muscle of Obese Mice. Inflammation 46, 1445–1457 (2023). https://doi.org/10.1007/s10753-023-01820-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01820-7

KEY WORDS

Navigation