Skip to main content

Advertisement

Log in

LL-37-dsRNA Complexes Modulate Immune Response via RIG-I in Oral Keratinocytes

  • CORRESPONDENCE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Recognition of nucleic acids as pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) promotes an inflammatory response. On the other hand, LL-37, an antimicrobial peptide, is a multifunctional modulator of immune response, though whether it modulates inflammatory responses induced by nucleic acids in oral keratinocytes is unknown. In this study, we firstly investigated the effect of LL-37 on CXCL10 induced by DAMPs and PAMPs in immortalized oral keratinocytes, RT7. Furthermore, the effects of LL-37 on translocation of exogenous nucleic acids into cytoplasm as well as cytosolic receptor, RIG-I on immune responses mediated by LL-37-nucleic acid complexes were examined. From these results, LL-37 enhanced necrotic cell supernatant (NCS)–induced CXCL10 expression in RT7, while the response was decreased by RNase. Complexes of LL-37 and double-stranded (ds) RNA, Poly(I:C) enhanced CXCL10 expression in comparison with each alone, which were associated with NF-κB activation. Furthermore, LL-37 was shown to bind with ds nucleotides and translocate into cytoplasm. Knockdown of RIG-I decreased expression of CXCL10 induced by LL-37-Poly(I:C) complexes, and RIG-I were co-localized with Poly(I:C) entered by LL-37 in cytoplasm. LL-37 modulates dsRNA-mediated inflammatory response via RIG-I in oral keratinocytes, which may play an important role in the pathogenesis of oral inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Barbalat, R., S.E. Ewald, M.L. Mouchess, et al. 2011. Nucleic acid recognition by the innate immune system. Annual Review of Immunology 29: 185–214. https://doi.org/10.1146/annurev-immunol-031210-101340.

    Article  CAS  PubMed  Google Scholar 

  2. Marshak-Rothstein, A. 2006. Toll-like receptors in systemic autoimmune disease. Nature Reviews Immunology 6: 823–835. https://doi.org/10.1038/nri1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zitvogel, L., O. Kepp, and G. Kroemer. 2010. Decoding cell death signals in inflammation and immunity. Cell 140: 798–804. https://doi.org/10.1016/j.cell.2010.02.015.

    Article  CAS  PubMed  Google Scholar 

  4. Brentano, F., O. Schorr, R.E. Gay, et al. 2005. RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis and Rheumatism 52: 2656–2665. https://doi.org/10.1002/art.21273.

    Article  CAS  PubMed  Google Scholar 

  5. Kahlenberg, J.M., and M.J. Kaplan. 2013. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. Journal of immunology 191: 4895–4901. https://doi.org/10.4049/jimmunol.1302005

  6. Dürr, U.H., U.S. Sudheendra, and A. Ramamoorthy. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta 1758: 1408–1425. https://doi.org/10.1016/j.bbamem.2006.03.030.

    Article  CAS  PubMed  Google Scholar 

  7. Türkoğlu, O., G. Kandiloğlu, A. Berdeli, et al. 2011. Antimicrobial peptide hCAP-18/LL-37 protein and mRNA expressions in different periodontal diseases. Oral Diseases 17: 60–67. https://doi.org/10.1111/j.1601-0825.2010.01704.x.

    Article  PubMed  Google Scholar 

  8. Takeuchi, Y., T. Nagasawa, S. Katagiri, et al. 2012. Salivary levels of antibacterial peptide (LL-37/hCAP-18) and cotinine in patients with chronic periodontitis. Journal of Periodontology 83: 766–772. https://doi.org/10.1902/jop.2011.100767.

    Article  CAS  PubMed  Google Scholar 

  9. Türkoğlu, O., G. Emingil, N. Kütükçüler, et al. 2013. Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. Journal of Clinical Periodontology 40: 933–941. https://doi.org/10.1902/jop.2009.080532.

    Article  CAS  Google Scholar 

  10. Xhindoli, D., S. Pacor, M. Benincasa, et al. 2016. The human cathelicidin LL-37–a pore-forming antibacterial peptide and host-cell modulator. Biochimica et Biophysica Acta 1858: 546–566. https://doi.org/10.1016/j.bbamem.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  11. Greer, A., C. Zenobia, and R.P. Darveau. 2005. Defensins and LL-37: A review of function in the gingival epithelium. Journal of Periodontal Research 40: 474–481. https://doi.org/10.1111/prd.12028.

    Article  Google Scholar 

  12. Alalwani, S.M., J. Sierigk, C. Herr, et al. 2010. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. European Journal of Immunology 40: 1118–1126. https://doi.org/10.1002/eji.200939275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, Z., T. Murakami, K. Suzuki, et al. 2014. Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS One 9: e85765. https://doi.org/10.1371/journal.pone.0085765.

  14. Hemshekhar, M., K.G. Choi, and N. Mookherjee. 2018. Host defense peptide LL-37-mediated chemoattractant properties, but not anti-inflammatory cytokine IL-1RA production, is selectively controlled by Cdc42 Rho GTPase via G protein-coupled receptors and JNK mitogen-activated protein kinase. Frontiers in Immunology 9: 1871. https://doi.org/10.3389/fimmu.2018.01871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ganguly, D., G. Chamilos, R. Lande, et al. 2009. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. Journal of Experimental Medicine 206: 1983–1994. https://doi.org/10.1084/jem.20090480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai, Y., S. Adhikarakunnathu, K. Bhardwaj, et al. 2011. LL37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs. PLoS One 6: e26632. https://doi.org/10.1371/journal.pone.0026632.

  17. Fujimoto, R., N. Kamata, K. Yokoyama, et al. 2002. Establishment of immortalized human oral keratinocytes by gene transfer of a telomerase component. J Jpn Oral Muco Membr 8: 1–8. https://doi.org/10.1111/j.1600-0765.2007.01019.x.

    Article  Google Scholar 

  18. Lim, D.M., and M.L. Wang. 2011. Toll-like receptor 3 signaling enables human esophageal epithelial cells to sense endogenous danger signals released by necrotic cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 301: 91–99. https://doi.org/10.1152/ajpgi.00471.2010.

    Article  CAS  Google Scholar 

  19. Ohta, K., A. Fukui, H. Shigeishi, et al. 2014. Expression and function of RIG-I in oral keratinocytes and fibroblasts. Cellular Physiology and Biochemistry 34: 1556–1565. https://doi.org/10.1159/000366359.

    Article  CAS  PubMed  Google Scholar 

  20. Shibata, T., U. Ohto, S. Nomura, et al. 2016. Guanosine and its modified derivatives are endogenous ligands for TLR7. International Immunology 28: 211–222. https://doi.org/10.1093/intimm/dxv062.

    Article  CAS  PubMed  Google Scholar 

  21. Chuang, T.H., J. Lee, L. Kline, et al. 2002. Toll-like receptor 9 mediates CpG-DNA signaling. Journal of Leukocyte Biology 71: 538–544. https://doi.org/10.2174/1566524023362159.

    Article  CAS  PubMed  Google Scholar 

  22. Alexopoulou, L., A.C. Holt, R. Medzhitov, et al. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature 413: 732–738. https://doi.org/10.1038/35099560.

    Article  CAS  PubMed  Google Scholar 

  23. Ganz, T. 2003. Defensins: Antimicrobial peptides of innate immunity. Nature Reviews Immunology 3: 710–720. https://doi.org/10.1038/nri1180.

    Article  CAS  PubMed  Google Scholar 

  24. Ohta, K., M. Kajiya, T. Zhu, et al. 2011. Additive effects of orexin B and vasoactive intestinal polypeptide on LL-37-mediated antimicrobial activities. Journal of Neuroimmunology 233: 37–45. https://doi.org/10.1016/j.jneuroim.2010.11.009.

    Article  CAS  PubMed  Google Scholar 

  25. Fukui, A., K. Ohta, H. Nishi, et al. 2013. Interleukin-8 and CXCL10 expression in oral keratinocytes and fibroblasts via toll-like receptors. Microbiology and Immunology 57: 198–206. https://doi.org/10.1111/1348-0421.12022.

    Article  CAS  PubMed  Google Scholar 

  26. Santoro, M.G., A. Rossi, and C. Amici. 2003. NF-kappaB and virus infection: Who controls whom. EMBO Journal 22: 2552–2560. https://doi.org/10.1093/emboj/cdg267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naruse, T., K. Ohta, H. Kato, et al. 2022. Immune response to cytosolic DNA via intercellular receptor modulation in oral keratinocytes and fibroblasts. Oral Diseases 28: 150–163. https://doi.org/10.1111/odi.13725.

    Article  PubMed  Google Scholar 

  28. Herster, F., Z. Bittner, N.K. Archer, et al. 2020. Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nature Communications 11: 105. https://doi.org/10.1038/s41467-019-13756-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hasan, M., C. Ruksznis, Y. Wang, et al. 2011. Antimicrobial peptides inhibit polyinosinic-polycytidylic acid-induced immune responses. The Journal of Immunology 187: 5653–5659. https://doi.org/10.4049/jimmunol.1102144.

    Article  CAS  PubMed  Google Scholar 

  30. Tang, X., D. Basavarajappa, J.Z. Haeggström, et al. 2015. P2X7 receptor regulates internalization of antimicrobial peptide LL-37 by human macrophages that promotes intracellular pathogen clearance. The Journal of Immunology 195: 1191–1201. https://doi.org/10.4049/jimmunol.1402845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anders, E., S. Dahl, D. Svensson, et al. 2018. LL-37-induced human osteoblast cytotoxicity and permeability occurs independently of cellular LL-37 uptake through clathrin-mediated endocytosis. Biochemical and Biophysical Research Communications 501: 280–285. https://doi.org/10.1016/j.bbrc.2018.04.235.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Z., K. Le, D. La Placa, et al. 2019. CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Reports 12: 100237. https://doi.org/10.1016/j.bonr.2019.100237.

  33. Sandgren, S., A. Wittrup, F. Cheng, et al. 2004. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. Journal of Biological Chemistry 279: 17951–17956. https://doi.org/10.1074/jbc.m311440200.

    Article  CAS  PubMed  Google Scholar 

  34. Matsumoto, M., K. Funami, M. Tatematsu, et al. 2014. Assessment of the Toll-like receptor 3 pathway in endosomal signaling. Methods in Enzymology 535: 149–165. https://doi.org/10.1016/b978-0-12-397925-4.00010-9.

    Article  CAS  PubMed  Google Scholar 

  35. Ablasser, A., F. Bauernfeind, G. Hartmann, et al. 2009. RIG-I-dependent sensing of Poly(dA:DT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature Immunology 10: 1065–1072. https://doi.org/10.1038/ni.1779.

    Article  CAS  PubMed  Google Scholar 

  36. Mori, K., M. Yanagita, S. Hasegawa, et al. 2015. Necrosis-induced TLR3 activation promotes TLR2 expression in gingival cells. Journal of Dental Research 94: 1149–1157. https://doi.org/10.1177/0022034515589289.

    Article  CAS  PubMed  Google Scholar 

  37. Chamilos, G., J. Gregorio, S. Meller, et al. 2012. Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood 120: 3699–3707. https://doi.org/10.1182/blood-2012-01-401364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, G. 2008. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. Journal of Biological Chemistry 283: 32637–32643. https://doi.org/10.1074/jbc.M805533200.

    Article  CAS  PubMed  Google Scholar 

  39. Lee, E.Y., C. Zhang, J. Di Domizio, et al. 2019. Helical antimicrobial peptides assemble into protofibril scaffolds that present ordered dsDNA to TLR9. Nature communication 10: 1012. https://doi.org/10.1038/s41467-019-08868-w

  40. Chiliveru, S., S.H. Rahbek, S.K. Jensen, et al. 2014. Inflammatory cytokines break down intrinsic immunological tolerance of human primary keratinocytes to cytosolic DNA. The Journal of Immunology 192: 2395–2404. https://doi.org/10.4049/jimmunol.1302120.

    Article  CAS  PubMed  Google Scholar 

  41. Singh, D., R. Qi, J.L. Jordan, et al. 2013. The human antimicrobial peptide LL-37, but not the mouse ortholog, mCRAMP, can stimulate signaling by Poly(I:C) through a FPRL1-dependent pathway. Journal of Biological Chemistry 288: 8258–8268. https://doi.org/10.1074/jbc.m112.440883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Doss, M., M.R. White, T. Tecle, et al. 2010. Human defensins and LL-37 in mucosal immunity. Journal of Leukocyte Biology 87: 79–92. https://doi.org/10.1189/jlb.0609382.

    Article  CAS  PubMed  Google Scholar 

  43. Nilsson, M.F., B. Sandstedt, O. Sørensen, et al. 1999. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infection and Immunity 67: 2561–2566. https://doi.org/10.1128/iai.67.5.2561-2566.1999.

    Article  Google Scholar 

  44. Davidopoulou, S., H. Theodoridis, K. Nazer, et al. 2014. Salivary concentration of the antimicrobial peptide LL-37 in patients with oral lichen planus. Journal of Oral Microbiology 6: 26156. https://doi.org/10.3402/jom.v6.26156.

    Article  PubMed  Google Scholar 

  45. Garlet, G.P., W.J. Martins, B.R. Ferreira, et al. 2003. Patterns of chemokines and chemokine receptors expression in different forms of human periodontal disease. Journal of Periodontal Research 38: 210–217. https://doi.org/10.1034/j.1600-0765.2003.02012.x.

    Article  CAS  PubMed  Google Scholar 

  46. Iijima, W., H. Ohtani, T. Nakayama, et al. 2003. Infiltrating CD8+ T-cells in oral lichen planus predominantly express CCR5 and CXCR3 and carry respective chemokine ligands RANTES/CCL5 and IP-10/CXCL10 in their cytolytic granules: A potential self-recruiting mechanism. American Journal of Pathology 163: 261–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 17K11840).

Corresponding author

Correspondence to Kouji Ohta.

Ethics declarations

Competing Interests

The authors declare competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 928 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, H., Ohta, K., Akagi, M. et al. LL-37-dsRNA Complexes Modulate Immune Response via RIG-I in Oral Keratinocytes. Inflammation 46, 808–823 (2023). https://doi.org/10.1007/s10753-023-01787-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01787-5

KEY WORDS

Navigation