Skip to main content

Advertisement

Log in

Low-Dose Colchicine Attenuates Sepsis-Induced Liver Injury: A Novel Method for Alleviating Systemic Inflammation

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis is a significant public health challenge. The immune system underlies the pathogenesis of the disease. The liver is both an active player and a target organ in sepsis. Targeting the gut immune system using low-dose colchicine is an attractive method for alleviating systemic inflammation in sepsis without inducing immunosuppression. The present study aimed to determine the use of low-dose colchicine in LPS-induced sepsis in mice. C67B mice were injected intraperitoneal with LPS to induce sepsis. The treatment group received 0.02 mg/kg colchicine daily by gavage. Short and extended models were performed, lasting 3 and 5 days, respectively. We followed the mice for biochemical markers of end-organ injury, blood counts, cytokine levels, and liver pathology and conducted proteomic studies on liver samples. Targeting the gut immune system using low-dose colchicine improved mice’s well-being measured by the murine sepsis score. Treatment alleviated the liver injury in septic mice, manifested by a significant decrease in their liver enzyme levels, including ALT, AST, and LDH. Treatment exerted a trend to reduce creatinine levels. Low-dose colchicine improved liver pathology, reduced inflammation, and reduced the pro-inflammatory cytokine TNFα and IL1-β levels. A liver proteomic analysis revealed low-dose colchicine down-regulated sepsis-related proteins, alpha-1 antitrypsin, and serine dehydratase. Targeting the gut immune system using low-dose colchicine attenuated liver injury in LPS-induced sepsis, reducing the pro-inflammatory cytokine levels. Low-dose colchicine provides a safe method for immunomodulation for multiple inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data is available upon request.

Abbreviations

SOFA:

Sequential organ failure assessment score

TNFα:

Tumor necrosis factor α

LPS:

Lipopolysaccharide

MSS:

Murine sepsis score

CBC:

Complete blood count

AST:

Aspartate aminotransferase

ALP:

Alkaline phosphatase

IL:

Interleukin

IFNγ:

Interferon γ

ALT:

Alanine aminotransferase

LDH:

Lactate dehydrogenase

WBC:

White blood count

References

  1. Singer, M., C.S. Deutschman, C.W. Seymour, et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315: 801–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iwashyna, T.J., C.R. Cooke, H. Wunsch, and J.M. Kahn. 2012. Population burden of long-term survivorship after severe sepsis in older Americans. Journal of the American Geriatrics Society 60: 1070–1077.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cecconi, M., L. Evans, M. Levy, and A. Rhodes. 2018. Sepsis and septic shock. Lancet 392: 75–87.

    Article  PubMed  Google Scholar 

  4. Iwashyna, T.J., E.W. Ely, D.M. Smith, and K.M. Langa. 2010. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304: 1787–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Strnad, P., F. Tacke, A. Koch, and C. Trautwein. 2017. Liver - guardian, modifier and target of sepsis. Nature Reviews. Gastroenterology & Hepatology 14: 55–66.

    Article  CAS  Google Scholar 

  6. Yan, J., and S. Li. 2014. The role of the liver in sepsis. International Reviews of Immunology 33: 498–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brun-Buisson, C., P. Meshaka, P. Pinton, and B. Vallet. 2004. EPISEPSIS: A reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Medicine 30: 580–588.

    Article  CAS  PubMed  Google Scholar 

  8. Terkeltaub, R.A., D.E. Furst, K. Bennett, K.A. Kook, R.S. Crockett, and M.W. Davis. 2010. High versus low dosing of oral colchicine for early acute gout flare: Twenty-four-hour outcome of the first multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-comparison colchicine study. Arthritis and rheumatism 62: 1060–1068.

    Article  CAS  PubMed  Google Scholar 

  9. Dinarello C.A, S.M. Wolff S.E. Goldfinger D.C. Dale and Alling D.W. 1974. Colchicine therapy for familial mediterranean fever. A double-blind trial. The New England journal of medicine 291: 934–937.

  10. Imazio, M., A. Brucato, R. Cemin, et al. 2013. A randomized trial of colchicine for acute pericarditis. The New England journal of medicine 369: 1522–1528.

    Article  CAS  PubMed  Google Scholar 

  11. Tardif, J.C., S. Kouz, D.D. Waters, et al. 2019. Efficacy and safety of low-dose colchicine after myocardial infarction. New England Journal of Medicine 381: 2497–2505.

    Article  CAS  PubMed  Google Scholar 

  12. Forkosh, E., A. Kenig, and Y. Ilan. 2020. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacology Research & Perspectives 8: e00616.

    Article  CAS  Google Scholar 

  13. Li, Z., G.S. Davis, C. Mohr, M. Nain, and D. Gemsa. 1996. Inhibition of LPS-induced tumor necrosis factor-alpha production by colchicine and other microtubule disrupting drugs. Immunobiology 195: 624–639.

    Article  CAS  PubMed  Google Scholar 

  14. Schattner A., I. el-Hador T. Hahn, and Landau Z. 1997. Triple anti-TNF-alpha therapy in early sepsis: a preliminary report. Journal of International Medical Research 25: 112–116.

  15. Fang, F., Y. Zhang, J. Tang, et al. 2019. Association of corticosteroid treatment with outcomes in adult patients with sepsis: A systematic review and meta-analysis. JAMA Internal Medicine 179: 213–223.

    Article  PubMed  Google Scholar 

  16. Ilan, Y. 2016. Oral immune therapy: Targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clin Transl Immunology 5: e60.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ilan, Y. 2016. Review article: Novel methods for the treatment of non-alcoholic steatohepatitis - targeting the gut immune system to decrease the systemic inflammatory response without immune suppression. Alimentary Pharmacology & Therapeutics 44: 1168–1182.

    Article  CAS  Google Scholar 

  18. Ilan, Y. 2019. Immune rebalancing by oral immunotherapy: A novel method for getting the immune system back on track. Journal of Leukocyte Biology 105: 463–472.

    Article  CAS  PubMed  Google Scholar 

  19. Ilan, Y., K. Shailubhai, and A. Sanyal. 2018. Immunotherapy with oral administration of humanized anti-CD3 monoclonal antibody: A novel gut-immune system-based therapy for metaflammation and NASH. Clinical and Experimental Immunology 193: 275–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drori, A., D. Rotnemer-Golinkin, S. Avni, et al. 2017. Attenuating the rate of total body fat accumulation and alleviating liver damage by oral administration of vitamin D-enriched edible mushrooms in a diet-induced obesity murine model is mediated by an anti-inflammatory paradigm shift. BMC Gastroenterology 17: 130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almon, E., T. Khoury, A. Drori, et al. 2017. An oral administration of a recombinant anti-TNF fusion protein is biologically active in the gut promoting regulatory T cells: Results of a phase I clinical trial using a novel oral anti-TNF alpha-based therapy. Journal of Immunological Methods 446: 21–29.

    Article  CAS  PubMed  Google Scholar 

  22. Ilan, Y., A. Ben Ya’acov, Y. Shabbat, S. Gingis-Velitski, E. Almon, and Y. Shaaltiel. 2016. Oral administration of a non-absorbable plant cell-expressed recombinant anti-TNF fusion protein induces immunomodulatory effects and alleviates nonalcoholic steatohepatitis. World Journal of Gastroenterology 22: 8760–8769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ben Ya’acov, A., Y. Lichtenstein, L. Zolotarov, and Y. Ilan. 2015. The gut microbiome as a target for regulatory T cell-based immunotherapy: Induction of regulatory lymphocytes by oral administration of anti-LPS enriched colostrum alleviates immune mediated colitis. BMC Gastroenterology 15: 154.

    Article  PubMed  Google Scholar 

  24. Khoury, T., A. Ben Ya’acov, Y. Shabat, L. Zolotarovya, R. Snir, and Y. Ilan. 2015. Altered distribution of regulatory lymphocytes by oral administration of soy-extracts exerts a hepatoprotective effect alleviating immune mediated liver injury, non-alcoholic steatohepatitis and insulin resistance. World Journal of Gastroenterology 21: 7443–7456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ilan, Y. 2009. Oral tolerance: Can we make it work? Human Immunology 70: 768–776.

    Article  CAS  PubMed  Google Scholar 

  26. Elinav, E., O. Pappo, M. Sklair-Levy, et al. 2006. Amelioration of non-alcoholic steatohepatitis and glucose intolerance in ob/ob mice by oral immune regulation towards liver-extracted proteins is associated with elevated intrahepatic NKT lymphocytes and serum IL-10 levels. The Journal of Pathology 208: 74–81.

    Article  CAS  PubMed  Google Scholar 

  27. Ilan, Y., M. Margalit, M. Ohana, et al. 2005. Alleviation of chronic GVHD in mice by oral immuneregulation toward recipient pretransplant splenocytes does not jeopardize the graft versus leukemia effect. Human Immunology 66: 231–240.

    Article  CAS  PubMed  Google Scholar 

  28. Margalit, M., and Y. Ilan. 2004. Oral immune regulation: A novel method for modulation of anti-viral immunity. Journal of Clinical Virology 31 (Suppl 1): S63–S68.

    Article  CAS  PubMed  Google Scholar 

  29. Shibolet, O., R. Alper, L. Zlotogarov, et al. 2004. Suppression of hepatocellular carcinoma growth via oral immune regulation towards tumor-associated antigens is associated with increased NKT and CD8+ lymphocytes. Oncology 66: 323–330.

    Article  CAS  PubMed  Google Scholar 

  30. Nagler, A., M. Pines, U. Abadi, et al. 2000. Oral tolerization ameliorates liver disorders associated with chronic graft versus host disease in mice. Hepatology 31: 641–648.

    Article  CAS  PubMed  Google Scholar 

  31. Trop, S., D. Samsonov I. Gotsman R. Alper J. Diment and Ilan Y. 1999.  Liver-associated lymphocytes expressing NK1.1 are essential for oral immune tolerance induction in a murine model. Hepatology 29: 746–755.

  32. Ilan, Y., B. Sauter, N.R. Chowdhury, et al. 1998. Oral tolerization to adenoviral proteins permits repeated adenovirus-mediated gene therapy in rats with pre-existing immunity to adenoviruses. Hepatology 27: 1368–1376.

    Article  CAS  PubMed  Google Scholar 

  33. Lalazar, G., E. Zigmond, S. Weksler-Zangen, et al. 2017. Oral administration of beta-glucosylceramide for the treatment of insulin resistance and nonalcoholic steatohepatitis: Results of a double-blind, placebo-controlled trial. Journal of Medicinal Food 20: 458–464.

    Article  CAS  PubMed  Google Scholar 

  34. Lalazar, G., M. Mizrahi, I. Turgeman, et al. 2015. Oral Administration of OKT3 MAb to Patients with NASH, promotes regulatory T-cell induction, and alleviates insulin resistance: Results of a phase IIa blinded placebo-controlled trial. Journal of Clinical Immunology 35: 399–407.

    Article  CAS  PubMed  Google Scholar 

  35. Israeli, E., E. Zigmond, G. Lalazar, et al. 2015. Oral mixture of autologous colon-extracted proteins for the Crohn’s disease: A double-blind trial. World Journal of Gastroenterology 21: 5685–5694.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Israeli, E., E. Goldin, S. Fishman, et al. 2015. Oral administration of non-absorbable delayed release 6-mercaptopurine is locally active in the gut, exerts a systemic immune effect and alleviates Crohn’s disease with low rate of side effects: Results of double blind Phase II clinical trial. Clinical and Experimental Immunology 181: 362–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Halota, W., P. Ferenci, D. Kozielewicz, et al. 2015. Oral anti-CD3 immunotherapy for HCV-nonresponders is safe, promotes regulatory T cells and decreases viral load and liver enzyme levels: Results of a phase-2a placebo-controlled trial. Journal of Viral Hepatitis 22: 651–657.

    Article  CAS  PubMed  Google Scholar 

  38. Mizrahi, M., Y. Shabat, A. Ben Ya’acov, et al. 2012. Alleviation of insulin resistance and liver damage by oral administration of Imm124-E is mediated by increased Tregs and associated with increased serum GLP-1 and adiponectin: Results of a phase I/II clinical trial in NASH. Journal of Inflammation Research 5: 141–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Israeli, E., and Y. Ilan. 2010. Oral administration of Alequel, a mixture of autologous colon-extracted proteins for the treatment of Crohn’s disease. Therap Adv Gastroenterol 3: 23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Margalit, M., E. Israeli, O. Shibolet, et al. 2006. A double-blind clinical trial for treatment of Crohn’s disease by oral administration of Alequel, a mixture of autologous colon-extracted proteins: A patient-tailored approach. American Journal of Gastroenterology 101: 561–568.

    Article  CAS  PubMed  Google Scholar 

  41. Israeli, E., E. Goldin, O. Shibolet, et al. 2005. Oral immune regulation using colitis extracted proteins for treatment of Crohn’s disease: Results of a phase I clinical trial. World Journal of Gastroenterology 11: 3105–3111.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shrum, B., R.V. Anantha, S.X. Xu, et al. 2014. A robust scoring system to evaluate sepsis severity in an animal model. BMC Research Notes 7: 233.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kleiner, D.E., E.M. Brunt, M. Van Natta, et al. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41: 1313–1321.

    Article  PubMed  Google Scholar 

  44. Koskinas, J., I.P. Gomatos, D.G. Tiniakos, et al. 2008. Liver histology in ICU patients dying from sepsis: A clinico-pathological study. World Journal of Gastroenterology 14: 1389–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, T., L. Yu-Jing, and T. Ma. 2022. The immunomodulatory function of adenosine in sepsis. Frontiers in Immunology 13: 936547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stolk, R.F., T. van der Poll, D.C. Angus, J.G. van der Hoeven, P. Pickkers, and M. Kox. 2016. Potentially Inadvertent Immunomodulation: Norepinephrine Use in Sepsis. American journal of respiratory and critical care medicine 194: 550–558.

    Article  CAS  PubMed  Google Scholar 

  47. Mithal, L.B., M. Arshad, L.R. Swigart, A. Khanolkar, A. Ahmed, and B.M. Coates. 2022. Mechanisms and modulation of sepsis-induced immune dysfunction in children. Pediatric research 91: 447–453.

    Article  PubMed  Google Scholar 

  48. Lee, A.O.C.J., A.H.Y. Chua, R. Sultana, J.H. Lee, and J.J.M. Wong. 2021. Immunomodulator use in paediatric severe sepsis and septic shock. Ann Acad Med Singap 50: 765–772.

    Article  PubMed  Google Scholar 

  49. Luo W-J, S.L. Yu and Chang C-C, et al. 2022. HLJ1 amplifies endotoxin-induced sepsis severity by promoting IL-12 heterodimerization in macrophages. eLife 11: e76094.

  50. Morales-Mantilla D.E., B. Kain D. Le A.R Flores S. Paust and King K.Y. 2022. Hematopoietic stem and progenitor cells improve survival from sepsis by boosting immunomodulatory cells. eLife 11: e74561.

  51. Brenner, C., L. Galluzzi, O. Kepp, and G. Kroemer. 2013. Decoding cell death signals in liver inflammation. Journal of Hepatology 59: 583–594.

    Article  CAS  PubMed  Google Scholar 

  52. Wree, A., M.D. McGeough, M.E. Inzaugarat, et al. 2018. NLRP3 inflammasome driven liver injury and fibrosis: Roles of IL-17 and TNF in mice. Hepatology 67: 736–749.

    Article  CAS  PubMed  Google Scholar 

  53. Fatani, S.H., K.H. Alkhatib H. Badr and Abeer Ahmed AL. 2020. Association of TNF-α-308 (G >A) (rs1800629) Gene Polymorphism with Adverse Outcomes of Sepsis in Critically Ill Patients. DNA Cell Biology 39: 1723–1729.

  54. Li, S., X. Huang, H. Zhong, et al. 2013. Tumour necrosis factor alpha (TNF-α) genetic polymorphisms and the risk of autoimmune liver disease: A meta-analysis. Journal of Genetics 92: 617–628.

    Article  CAS  PubMed  Google Scholar 

  55. Spirlì, C., M.H. Nathanson, R. Fiorotto, et al. 2001. Pro-inflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology 121: 156–169.

    Article  PubMed  Google Scholar 

  56. Gaddi, P.J., M.J. Crane, M. Kamanaka, R.A. Flavell, G.S. Yap, and T.P. Salazar-Mather. 2012. IL-10 mediated regulation of liver inflammation during acute murine cytomegalovirus infection. PLoS ONE 7: e42850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taniki N., N. Nakamoto and Chu PS, et al. 2018. Intestinal barrier regulates immune responses in the liver via IL-10-producing macrophages. JCI Insight 3.

  58. Sun, J., J. Zhang, X. Wang, et al. 2020. Gut-liver crosstalk in sepsis-induced liver injury. Critical Care 24: 614.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nabekura, T., L. Riggan, A.D. Hildreth, T.E. O’Sullivan, and A. Shibuya. 2020. Type 1 innate lymphoid cells protect mice from acute liver injury via interferon-γ secretion for upregulating Bcl-xL expression in hepatocytes. Immunity 52: 96-108.e9.

    Article  CAS  PubMed  Google Scholar 

  60. Sewnath, M.E., T. Van Der Poll, C.J. Van Noorden, F.J. Ten Kate, and D.J. Gouma. 2002. Endogenous interferon gamma protects against cholestatic liver injury in mice. Hepatology 36: 1466–1477.

    Article  CAS  PubMed  Google Scholar 

  61. Küsters, S., F. Gantner, G. Künstle, and G. Tiegs. 1996. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology 111: 462–471.

    Article  PubMed  Google Scholar 

  62. Zhang, S., R. Liang, W. Luo, et al. 2013. High susceptibility to liver injury in IL-27 p28 conditional knockout mice involves intrinsic interferon-γ dysregulation of CD4+ T cells. Hepatology 57: 1620–1631.

    Article  CAS  PubMed  Google Scholar 

  63. Hoskin, S.O., D.M. Bremner, G. Holtrop, and G.E. Lobley. 2016. Responses in whole-body amino acid kinetics to an acute, sub-clinical endotoxin challenge in lambs. British Journal of Nutrition 115: 576–584.

    Article  CAS  PubMed  Google Scholar 

  64. Nuijens, J.H., J.J. Abbink, Y.T. Wachtfogel, et al. 1992. Plasma elastase alpha 1-antitrypsin and lactoferrin in sepsis: Evidence for neutrophils as mediators in fatal sepsis. Journal of Laboratory and Clinical Medicine 119: 159–168.

    CAS  PubMed  Google Scholar 

  65. Leung, Y.Y., L.L. Yao Hui, and V.B. Kraus. 2015. Colchicine-Update on mechanisms of action and therapeutic uses. Seminars in arthritis and rheumatism 45: 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu, X., Y. Liu, C. Wang, et al. 2021. Pathogenic characteristics and treatment in 43 cases of acute colchicine poisoning. Toxicology research 10: 885–892.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stewart, S., K.C.K. Yang, K. Atkins, N. Dalbeth, and P.C. Robinson. 2020. Adverse events during oral colchicine use: A systematic review and meta-analysis of randomised controlled trials. Arthritis Research & Therapy 22: 28.

    Article  CAS  Google Scholar 

  68. Ilan, Y. 2019. Randomness in microtubule dynamics: An error that requires correction or an inherent plasticity required for normal cellular function? Cell Biology International 43: 739–748.

    Article  PubMed  Google Scholar 

  69. Ilan-Ber, T., and Y. Ilan. 2019. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Molecular Immunology 111: 73–82.

    Article  CAS  PubMed  Google Scholar 

  70. Ilan, Y. 2019. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. Journal of Cellular Physiology 234: 7923–7937.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ariel Kenig, Tal Keidar-Haran, Henny Azmanov, Asa Kessler, Yotam Kolben, Tamar Tayri-Wilk, and Sarah Weksler-Zangen: conducted the experiments. Yaron Ilan and Nir Kalisman: conceptualized.

Corresponding author

Correspondence to Yaron Ilan.

Ethics declarations

Ethical Approval

The study was approved by the animal committee of the Hebrew University.

Consent for Publication

Approved.

Conflict of Interest

YI is the founder of Oberon Sciences. The other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenig, A., Keidar-Haran, T., Azmanov, H. et al. Low-Dose Colchicine Attenuates Sepsis-Induced Liver Injury: A Novel Method for Alleviating Systemic Inflammation. Inflammation 46, 963–974 (2023). https://doi.org/10.1007/s10753-023-01783-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01783-9

KEY WORDS

Navigation