Skip to main content
Log in

Sinigrin Attenuates the Dextran Sulfate Sodium-induced Colitis in Mice by Modulating the MAPK Pathway

  • CORRESPONDENCE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Ulcerative colitis (UC) is an intestinal inflammatory disease characterised by the loss of intestinal crypts, edema, mucosal ulceration, and infiltration of inflammatory cells in the mucosa. The current study aimed to investigate the protective and therapeutic effects of sinigrin and underlying mechanisms in a dextran sulfate sodium (DSS)-induced mouse model of ulcerative colitis. DSS-induced colitis models were used to demonstrate sinigrin’s therapeutic/protective action. Mice were orally administered with sinigrin (15 mg/kg or 30 mg/kg) for a period of 12 days in both prophylactic and therapeutic models. Animal weights, stool consistency, and bleeding parameters were measured throughout the experimental period. After the experimental period, colon lengths were measured, and colon tissues were harvested to determine the levels of oxidative stress–inducing factors (nitrates and MDA levels) and anti-oxidant components (GSH, SOD, and catalase). Furthermore, gene expression analysis, IL-17 levels, and inflammatory marker expressions were measured using RT-qPCR, ELISA, and immunohistochemical methods respectively. Furthermore, histopathological observations and elucidation of the mechanism of action were determined using H&E analysis and Western blot analysis. Sinigrin treatment (in both prophylactic and therapeutic models) significantly mitigated the DSS-induced body weight loss, attenuated the colon length shrinkage, and improved the disease index score (p < 0.001). Further results revealed that sinigrin’s protective/therapeutic effect is associated with a significant attenuation of pro‑inflammatory cytokine production (p < 0.001), reversing the anti-oxidant enzyme levels (p < 0.001) and substantial improvement (2 folds) of the disruption of the colonic morphology in colon tissues compared to DSS control. Immunohistochemical analysis showed that sinigrin treatment remarkably reduced the DSS-induced myeloperoxidase, neutrophil elastase, and CD68 expression in colon tissues. Additionally, sinigrin successfully abrogated the DSS-induced IL-17 levels (p < 0.001) and improved the colonic barrier in colon tissues. Overall, these results demonstrated that sinigrin exerts protective and therapeutic effects on DSS‑induced colitis, by enhancing the anti-oxidant enzymes and suppressing the intestinal inflammatory cascade of markers by regulating the MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

All data generated or analysed during this study are included in this manuscript file (and its supplementary information files).

References

  1. de Oliveira, D.E., R. Santos, G. DA Silva Cardoso, L. Da Costa Lima, M.L. De Sousa Cavalcante, M.S. Silva, A.K.M. Cavalcante, J.S. Severo, F.B. De Melo Sousa, G. Pacheco, E.H.P. Alves, L.M.S Nobre, J.V.R Medeiros, R.C. Lima-Junior, A.A Dos Santos and Tolentino, M. 2021. l-Glutamine and physical exercise prevent intestinal inflammation and oxidative stress without improving gastric dysmotility in rats with ulcerative colitis. Inflammation 44:617–632. https://doi.org/10.1007/s10753-020-01361-3.

  2. Barros, V., J.S. Severo, P.H.M. Mendes, A.C.A. da Silva, K.B.V. de Oliveira, J.M.L. Parente, M.M. Lima, E.M.M. Neto, and AGUIAR DOS SANTOS, A. & TOLENTINO, M. 2021. Effect of dietary interventions on inflammatory biomarkers of inflammatory bowel diseases: A systematic review of clinical trials. Nutrition 91–92. https://doi.org/10.1016/j.nut.2021.111457.

    Article  CAS  PubMed  Google Scholar 

  3. Olivera, P., S. Danese, L. Pouillon, S. Bonovas, and L. Peyrin-Biroulet. 2019. Effectiveness of golimumab in ulcerative colitis: A review of the real world evidence. Digestive and Liver Disease 51: 327–334. https://doi.org/10.1016/j.dld.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  4. M’KOMA, A. E. 2013. Inflammatory bowel disease: An expanding global health problem. Clinical Medicine Insights Gastroenterology 6: 33–47. https://doi.org/10.4137/CGast.S12731.

    Article  PubMed  Google Scholar 

  5. RAY, G. 2016. Inflammatory bowel disease in India - past, present and future. World Journal of Gastroenterology 22: 8123–8136. https://doi.org/10.3748/wjg.v22.i36.8123.

    Article  CAS  PubMed  Google Scholar 

  6. Loftus, C.G., E.V. Loftus J.R. Harmsen, W.S. Zinsmeister, A.R. Tremaine, W.J, Melton, L.J. 3RD & Sandborn, W.J. 2007. Update on the incidence and prevalence of Crohn's disease and ulcerative colitis in Olmsted County, Minnesota, 1940–2000. Inflammatory Bowel Diseases 13:254–261.https://doi.org/10.1002/ibd.20029

  7. Patel, D.N., C.A. King, S.R. Bailey, J.W. Holt, K. Venkatachalam, A. Agrawal, A.J. Valente, and B. Chandrasekar. 2007. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation. Journal of Biological Chemistry 282: 27229–27238. https://doi.org/10.1074/jbc.M703250200.

    Article  CAS  PubMed  Google Scholar 

  8. Fujishima, S., A.R. Hoffman, A. R., T, Vu, K.J. Kim, H. Zheng, D. Daniel, Y. KIM, E. Wallace, E.F. J.W. Larrick, T.A and T.A. T. Raffin.1993. Regulation of neutrophil interleukin 8 gene expression and protein secretion by LPS, TNF-α, and IL-1β. 154:478–485. https://doi.org/10.1002/jcp.1041540305.

  9. Wright, H.L., R.J. Moots, and S.W. Edwards. 2014. The multifactorial role of neutrophils in rheumatoid arthritis. Nature Reviews Rheumatology 10: 593–601. https://doi.org/10.1038/nrrheum.2014.80.

    Article  CAS  PubMed  Google Scholar 

  10. Metzler, K.D., T.A. Fuchs, W.M. Nauseef, D. Reumaux, J. Roesler, I. Schulze, V. Wahn, V. Papayannopoulos, and A. Zychlinsky. 2011. Myeloperoxidase is required for neutrophil extracellular trap formation: Implications for innate immunity. Blood 117: 953–959. https://doi.org/10.1182/blood-2010-06-290171%JBlood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gunn, M.D., N.A. Nelken, X. Liao, and L.T. Williams. 1997. Monocyte chemoattractant protein-1 is sufficient for the chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation. The Journal of Immunology 158: 376–383.

    Article  CAS  PubMed  Google Scholar 

  12. Deshmane, S.L., S. Kremlev, S. Amini, and B.E. Sawaya. 2009. Monocyte chemoattractant protein-1 (MCP-1): An overview. Journal of Interferon and Cytokine Research 29: 313–326. https://doi.org/10.1089/jir.2008.0027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nayar, S., and J.H. Cho. 2021. From single-target to cellular niche targeting in Crohn’s disease: Intercepting bad communications. eBioMedicine 74. https://doi.org/10.1016/j.ebiom.2021.103690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chu, S., W. Liu, Y. Lu, M. Yan, Y. Guo, N. Chang, M. Jiang, and G. Bai. 2020. Sinigrin enhanced antiasthmatic effects of beta adrenergic receptors agonists by regulating cAMP-mediated pathways. Frontiers in Pharmacology 11: 723. https://doi.org/10.3389/fphar.2020.00723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jie, M., W.M. Cheung, V. Yu, Y. Zhou, P.H. Tong, and J.W. Ho. 2014. Anti-proliferative activities of sinigrin on carcinogen-induced hepatotoxicity in rats. PLoS One1 9. https://doi.org/10.1371/journal.pone.0110145.

    Article  CAS  Google Scholar 

  16. Lee, H.W., C.G. Lee, D.K. Rhee, S.H. Um, and S. Pyo. 2017. Sinigrin inhibits production of inflammatory mediators by suppressing NF-κB/MAPK pathways or NLRP3 inflammasome activation in macrophages. International Immunopharmacology 45: 163–173. https://doi.org/10.1016/j.intimp.2017.01.032.

    Article  CAS  PubMed  Google Scholar 

  17. Abbas, Q., M. Hassan, H. Raza, S.J. Kim, K.W. Chung, G.H. Kim, and S.Y. Seo. 2017. In vitro, in vivo and in silico anti-hyperglycemic inhibition by sinigrin. Asian Pacific Journal of Tropical Medicine 10: 372–379. https://doi.org/10.1016/j.apjtm.2017.03.019.

    Article  CAS  PubMed  Google Scholar 

  18. Mazumder, A., A. Dwivedi, and J. du Plessis. 2016. Sinigrin and its therapeutic benefits. Molecules 21: 416. https://doi.org/10.3390/molecules21040416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Medicherla, K., A. Ketkar, B.D. Sahu, G. Sudhakar, and R. Sistla. 2016. Rosmarinus officinalis L. extract ameliorates intestinal inflammation through MAPKs/NF-κB signaling in a murine model of acute experimental colitis. Food & Function 7: 3233–3243. https://doi.org/10.1039/c6fo00244g.

    Article  CAS  Google Scholar 

  20. Sharma, N., T.B. Shaikh, A. Eedara, M. Kuncha, R. Sistla, and S.B. Andugulapati. 2022. Dehydrozingerone ameliorates thioacetamide-induced liver fibrosis via inhibition of hepatic stellate cells activation through modulation of the MAPK pathway. European Journal of Pharmacology 937. https://doi.org/10.1016/j.ejphar.2022.175366.

    Article  CAS  PubMed  Google Scholar 

  21. Sangaraju, R., N. Nalban, S. Alavala, V. Rajendran, M.K. Jerald, and R. Sistla. 2019. Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice. Inflammation Research 68: 691–704. https://doi.org/10.1007/s00011-019-01252-w.

    Article  CAS  PubMed  Google Scholar 

  22. Koneru, M., B.D. Sahu, J.M. Kumar, M. Kuncha, A. Kadari, E.K. Kilari, and R. Sistla. 2016. Fisetin protects liver from binge alcohol-induced toxicity by mechanisms including inhibition of matrix metalloproteinases (MMPs) and oxidative stress. Journal of Functional Foods 22: 588–601. https://doi.org/10.1016/j.jff.2016.02.019.

    Article  CAS  Google Scholar 

  23. Wu, C., H. Yang, C. Han, Q. Wang, H. Zhang, T. Huang, W. Mao, C. Tang, W. Zhao, Z. Zhu, J. Xu, and W. Yang. 2021. Quyu Shengxin decoction alleviates DSS-induced ulcerative colitis in mice by suppressing RIP1/RIP3/NLRP3 signalling. Evidence-Based Complementary and Alternative Medicine 2021: 6682233. https://doi.org/10.1155/2021/6682233.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tirunavalli, S.K., K. Gourishetti, R.S.S. Kotipalli, M. Kuncha, M. Kathirvel, R. Kaur, M.K. Jerald, R. Sistla, and S.B. Andugulapati. 2021. Dehydrozingerone ameliorates lipopolysaccharide induced acute respiratory distress syndrome by inhibiting cytokine storm, oxidative stress via modulating the MAPK/NF-κB pathway. Phytomedicine 92. https://doi.org/10.1016/j.phymed.2021.153729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Andugulapati, S.B., K. Gourishetti, S.K. Tirunavalli, T.B. Shaikh, and R. Sistla. 2020. Biochanin-A ameliorates pulmonary fibrosis by suppressing the TGF-β mediated EMT, myofibroblasts differentiation and collagen deposition in in vitro and in vivo systems. Phytomedicine 78. https://doi.org/10.1016/j.phymed.2020.153298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coccia, M., O.J. Harrison, C. Schiering, M.J. Asquith, B. Becher, F. Powrie, and K.J. Maloy. 2012. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. Journal of Experimental Medicine 209: 1595–1609. https://doi.org/10.1084/jem.20111453%JJournalofExperimentalMedicine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Z., M. Zheng, J. Bindas, P. Schwarzenberger, and J.K. Kolls. 2006. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflammatory Bowel Diseases 12: 382–388. https://doi.org/10.1097/01.Mib.0000218764.06959.91.

    Article  PubMed  Google Scholar 

  28. Lee, Y.J., J.Y. Han, C.G. Lee, K. Heo, S.I. Park, Y.S. Park, J.S. Kim, K.M. Yang, K.-J. Lee, T.-H. Kim, M.H. Rhee, and S.D. Kim. 2014b. Korean Red Ginseng saponin fraction modulates radiation effects on lipopolysaccharide-stimulated nitric oxide production in RAW264.7 macrophage cells. Journal of Ginseng Research 38: 208–214. https://doi.org/10.1016/j.jgr.2014.02.001.

  29. Meier, J., and A. Sturm. 2011. Current treatment of ulcerative colitis. World Journal of Gastroenterology 17: 3204–3212. https://doi.org/10.3748/wjg.v17.i27.3204.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Eichele, D.D., and K.K. Kharbanda. 2017. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World journal of gastroenterology 23: 6016–6029. https://doi.org/10.3748/wjg.v23.i33.6016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sánchez De Medina, F., Martínez-Augustin, O., González, R., Ballester, I., Nieto, A., Gálvez, J. & Zarzuelo, A. 2004. Induction of alkaline phosphatase in the inflamed intestine: A novel pharmacological target for inflammatory bowel disease. Biochemical Pharmacology 68: 2317–2326. https://doi.org/10.1016/j.bcp.2004.07.045.

    Article  CAS  PubMed  Google Scholar 

  32. Tian, T., Z. Wang, and J. Zhang. 2017. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxidative Medicine and Cellular Longevity 2017: 4535194. https://doi.org/10.1155/2017/4535194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mo, J., J. Ni, M. Zhang, Y. Xu, Y. Li, N. Karim, and W. Chen. 2022. Mulberry anthocyanins ameliorate DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. 11: 1674.

    CAS  Google Scholar 

  34. Mei, Y., Z. Wang, Y. Zhang, T. Wan, J. Xue, W. He, Y. Luo, Y. Xu, X. Bai, Q. Wang, and Y. Huang. 2019. FA-97, a new synthetic caffeic acid phenethyl ester derivative, ameliorates DSS-induced colitis against oxidative stress by activating Nrf2/HO-1 pathway. Frontiers in Immunology 10: 2969. https://doi.org/10.3389/fimmu.2019.02969.

    Article  CAS  PubMed  Google Scholar 

  35. Cong C, X Yuan, Y Hu, W Chen, Y Wang, and L Tao.2021. Sinigrin attenuates angiotensin II-induced kidney injury by inactivating nuclear factor-κB and extracellular signal-regulated kinase signaling in vivo and in vitro International Journal of Molecular Medicine 48 https://doi.org/10.3892/ijmm.2021.4994

  36. Kiesler, P., I.J. Fuss, and W. Strober. 2015. Experimental models of inflammatory bowel diseases. Cellular and Molecular Gastroenterology and Hepatology 1: 154–170. https://doi.org/10.1016/j.jcmgh.2015.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wirtz, S., C. Neufert, B. Weigmann, and M.F. Neurath. 2007. Chemically induced mouse models of intestinal inflammation. Nature Protocols 2: 541–546. https://doi.org/10.1038/nprot.2007.41.

    Article  CAS  PubMed  Google Scholar 

  38. SARTOR, R. B. 2006. Mechanisms of disease: Pathogenesis of Crohn’s disease and ulcerative colitis. Nature Clinical Practice. Gastroenterology & Hepatology 3: 390–407. https://doi.org/10.1038/ncpgasthep0528.

    Article  Google Scholar 

  39. Geremia, A., P. Biancheri, P. Allan, G.R. Corazza, and A. di Sabatino. 2014. Innate and adaptive immunity in inflammatory bowel disease. Autoimmunity Reviews 13: 3–10. https://doi.org/10.1016/j.autrev.2013.06.004.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, H.W. and Lee, K.R. 2015. Effect of Sinigrin on vascular cell adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells via downregulation of NF-κB signaling pathways. 29:59315. https://doi.org/10.1096/fasebj.29.1_supplement.593.15.

  41. Ito, R., M. Kita, M. Shin-Ya, T. Kishida, A. Urano, R. Takada, J. Sakagami, J. Imanishi, Y. Iwakura, T. Okanoue, T. Yoshikawa, K. Kataoka, and O. Mazda. 2008. Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochemical and Biophysical Research Communications 377: 12–16. https://doi.org/10.1016/j.bbrc.2008.09.019.

    Article  CAS  PubMed  Google Scholar 

  42. Papayannopoulos, V., K.D. Metzler, A. Hakkim, and A. Zychlinsky. 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. Journal of Cell Biology 191: 677–691. https://doi.org/10.1083/jcb.201006052%JJournalofCellBiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luther, S.A., and J.G. Cyster. 2001. Chemokines as regulators of T cell differentiation. Nature Immunology 2: 102–107. https://doi.org/10.1038/84205.

    Article  CAS  PubMed  Google Scholar 

  44. Khan, W.I., Y. Motomura, H. Wang, R.T. El-Sharkawy, E.F. Verdu, M. Verma-Gandhu, B.J. Rollins, and S.M. Collins. 2006. Critical role of MCP-1 in the pathogenesis of experimental colitis in the context of immune and enterochromaffin cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 291: G803–G811. https://doi.org/10.1152/ajpgi.00069.2006.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, L., H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, and L. Zhao. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9: 7204–7218. https://doi.org/10.18632/oncotarget.23208.

    Article  PubMed  Google Scholar 

  46. Broom, O.J., B. Widjaya, J. Troelsen, J. Olsen, and O.H. Nielsen. 2009. Mitogen activated protein kinases: A role in inflammatory bowel disease? Clinical and Experimental Immunology 158: 272–280. https://doi.org/10.1111/j.1365-2249.2009.04033.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bachstetter, A.D., and L.J. van Eldik. 2010. The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS. Aging & Disease 1: 199–211.

    Google Scholar 

  48. Hommes, D., B. van den Blink, T. Plasse, J. Bartelsman, C. Xu, B. Macpherson, G. Tytgat, M. Peppelenbosch, and S. van Deventer. 2002. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease. Gastroenterology 122: 7–14. https://doi.org/10.1053/gast.2002.30770.

    Article  CAS  PubMed  Google Scholar 

  49. Schreiber, S., B. Feagan, G. D’Haens, J.F. Colombel, K. Geboes, M. Yurcov, V. Isakov, O. Golovenko, C.N. Bernstein, D. Ludwig, T. Winter, U. Meier, C. Yong, and J. Steffgen. 2006. Oral p38 mitogen-activated protein kinase inhibition with BIRB 796 for active Crohn’s disease: A randomized, double-blind, placebo-controlled trial. Clinical Gastroenterology and Hepatology 4: 325–334. https://doi.org/10.1016/j.cgh.2005.11.013.

    Article  CAS  PubMed  Google Scholar 

  50. Hollenbach, E., M. Neumann, M. Vieth, A. Roessner, P. Malfertheiner, and M. Naumann. 2004. Inhibition of p38 MAP kinase- and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. The FASEB Journal 18: 1550–1552. https://doi.org/10.1096/fj.04-1642fje.

    Article  CAS  PubMed  Google Scholar 

  51. Waetzig, G.H., D. Seegert, P. Rosenstiel, S. Nikolaus, and S. Schreiber. 2002. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. The Journal of Immunology 168: 5342–5351. https://doi.org/10.4049/jimmunol.168.10.5342.

    Article  CAS  PubMed  Google Scholar 

  52. Dahan, S., G. Roda, D. Pinn, F. Roth-Walter, O. Kamalu, A.P. Martin, and L. Mayer. 2008. Epithelial: Lamina propria lymphocyte interactions promote epithelial cell differentiation. Gastroenterology 134: 192–203. https://doi.org/10.1053/j.gastro.2007.10.022.

    Article  CAS  PubMed  Google Scholar 

  53. Lee, H., C. Lee, J. Kim, and Pyo, S. 2014a. The inhibitory effect of sinigrin on the production of inflammatory mediators induced by lipopolysaccharide in RAW 264.7 macrophages (1056.5). 28:1056.5. https://doi.org/10.1096/fasebj.28.1_supplement.1056.5.

  54. Garat, C., and W.P. Arend. 2003. Intracellular IL-1Ra type 1 inhibits IL-1-induced IL-6 and IL-8 production in Caco-2 intestinal epithelial cells through inhibition of p38 mitogen-activated protein kinase and NF-kappaB pathways. Cytokine 23: 31–40. https://doi.org/10.1016/s1043-4666(03)00182-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the Director, CSIR-IICT, Hyderabad, India, for providing the facilities and funding necessary for the conducting of this work. CSIR-IICT manuscript communication number: IICT/Pubs./2022/214.

Funding

Used internal funds of the institute. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

All data generated or analyzed during this study are included in this manuscript file (and its supplementary information files).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.R.K, S.B.A, methodology: R. S.K, S.K.T, A.S.B, B.D.S; Western blot analysis and immunohistochemistry: S.K.T, anti-oxidant assays: R.S.K, In vivo experiments: M.K, R.S.K, A.B.P, histopathology: M.K.J, A.S.B; manuscript writing—review and editing: S.B.A, and S. R. K.; funding acquisition: S.R. K.

Corresponding author

Correspondence to Sai Balaji Andugulapati.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 435 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotipalli, R.S.S., Tirunavalli, S.K., Pote, A.B. et al. Sinigrin Attenuates the Dextran Sulfate Sodium-induced Colitis in Mice by Modulating the MAPK Pathway. Inflammation 46, 787–807 (2023). https://doi.org/10.1007/s10753-022-01780-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01780-4

KEY WORDS

Navigation