Skip to main content

Advertisement

Log in

Fibrosis in Liver and Pancreas: a Review on Pathogenic Significance, Diagnostic Options, and Current Management Strategies

  • REVIEW
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammation is one of the most natural ways of the body’s biological response against invading foreign pathogens or injured cells which eventually can lead to a chronic or acute productive response. Fibrosis is an end-stage event associated with an inflammatory response addressed with tissue hardening, discoloration, and most importantly overgrowth of associated tissue. Various organs at different diseased conditions are affected by fibrosis including the liver, pancreas, brain, kidney, and lung. Etiological factors including internal like inflammatory cytokines, growth factors, and oxidative stress and external like alcohol and viruses contribute to the development of fibrosis in both the liver and pancreas. More frequently, these organs are associated with pathogenic progression towards fibrosis from acute and chronic conditions and eventually fail in their functions. The pathogenesis of the organ-fibrotic events mainly depends on the activation of residential stellate cells; these cells help to accumulate collagen in respective organs. Various diagnostic options have been developed recently, and various therapeutic options are in trial to tackle fibrosis. In this review, an overview on fibrosis, the pathogenesis of fibrosis in the liver and pancreas, various diagnostic options developed in recent years, and possible present therapeutic measures to overcome options of fibrosis in the liver and pancreas; thus, restoring the functional status of organs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Wick, Georg, Cecilia Grundtman, Christina Mayerl, Thomas-Florian Wimpissinger, Johann Feichtinger, Bettina Zelger, Roswitha Sgonc, and Dolores Wolfram. 2013. "The immunology of fibrosis." Annual review of immunology 31, 1: 107–35.

  2. Wynn, T.A. 2004. Fibrotic disease and the TH1/TH2 paradigm. Nature Reviews Immunology 4: 583–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henderson, N.C., F. Rieder, and T.A. Wynn. 2020. Fibrosis: From mechanisms to medicines. Nature 587: 555–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Y. 2010. New insights into epithelial-mesenchymal transition in kidney fibrosis. Journal of the American Society of Nephrology 21: 212–222.

    Article  CAS  PubMed  Google Scholar 

  5. Lebleu, V.S., et al. 2013. Origin and function of myofibroblasts in kidney fibrosis. Nature Medicine 19: 1047–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krenning, G., E.M. Zeisberg, and R. Kalluri. 2010. The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology 225: 631–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldsmith, E.C., et al. 2004. Organization of fibroblasts in the heart. Developmental Dynamics 230: 787–794.

    Article  CAS  PubMed  Google Scholar 

  8. Lakatos, H. F. et al. 2007. The role of PPARs in lung fibrosis. PPAR Research 2007.

  9. Hardie, W.D., S.W. Glasser, and J.S. Hagood. 2009. Emerging concepts in the pathogenesis of lung fibrosis. American Journal of Pathology 175: 3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelly, M., M. Kolb, P. Bonniaud, and J. Gauldie. 2005. Re-evaluation of fibrogenic cytokines in lung fibrosis. Current Pharmaceutical Design 9: 39–49.

    Article  Google Scholar 

  11. Shroff, A., A. Mamalis, and J. Jagdeo. 2014. Oxidative stress and skin fibrosis. Curr. Pathobiol. Rep. 2: 257–267.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jinnin, M. 2010. Mechanisms of skin fibrosis in systemic sclerosis. Journal of Dermatology 37: 11–25.

    Article  CAS  PubMed  Google Scholar 

  13. Lim, Y.S., and W.R. Kim. 2008. The global impact of hepatic fibrosis and end-stage liver disease. Clinics in Liver Disease 12: 733–746.

    Article  PubMed  Google Scholar 

  14. Bataller, R., and B. Gao. 2015. Liver fibrosis in alcoholic liver disease. Seminars in Liver Disease 35: 146–156.

    Article  CAS  PubMed  Google Scholar 

  15. Aydin, M.M., and K.C. Akcali. 2018. Liver fibrosis. Turkish. Journal of Gastroenterology 29: 14–21.

    Google Scholar 

  16. Abe, H., et al. 2016. Effective prevention of liver fibrosis by liver-targeted hydrodynamic gene delivery of matrix metalloproteinase-13 in a rat liver fibrosis model. Mol. Ther. - Nucleic Acids 5: e276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, Y.M., S.Y. Kim, and E. Seki. 2019. Inflammation and liver cancer: Molecular mechanisms and therapeutic targets. Seminars in Liver Disease 39: 26–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Apte, M.V., and J.S. Wilson. 2012. Dangerous liaisons: Pancreatic stellate cells and pancreatic cancer cells. Journal of Gastroenterology and Hepatology 27: 69–74.

    Article  CAS  PubMed  Google Scholar 

  19. Masamune, A., T. Watanabe, K. Kikuta, and T. Shimosegawa. 2009. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clinical Gastroenterology and Hepatology 7: S48–S54.

    Article  CAS  PubMed  Google Scholar 

  20. Apte, M.V., and J.S. Wilson. 2004. Mechanisms of pancreatic fibrosis. Digestive Diseases 22: 273–279.

    Article  CAS  PubMed  Google Scholar 

  21. Omary, M.B., A. Lugea, A.W. Lowe, and S.J. Pandol. 2007. The pancreatic stellate cell: A star on the rise in pancreatic diseases. The Journal of Clinical Investigation 117: 50–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang, D., et al. 2018. Galectin-1 expression in activated pancreatic satellite cells promotes fibrosis in chronic pancreatitis/pancreatic cancer via the TGF-β1/Smad pathway. Oncology Reports 39: 1347–1355.

    CAS  PubMed  Google Scholar 

  23. Apte, M.V., et al. 1998. Periacinar stellate shaped cells in rat pancreas: Identification, isolation, and culture. Gut 43: 128–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Phillips, P. 2012. Pancreatic stellate cells and fibrosis. In eds. Paul J. Grippo and Hidayatullah G. Munshi. Trivandrum (India).

  25. Phillips, P.A., et al. 2003. Rat pancreatic stellate cells secrete matrix metalloproteinases: Implications for extracellular matrix turnover. Gut 52: 275–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 2697b11224f60f415eff7b000c3cb9cdc3bde2a4 @ https://www.ncbi.nlm.nih.gov/.

  27. Seki, E., and D.A. Brenner. 2015. Recent advancement of molecular mechanisms of liver fibrosis. Journal of Hepato-Biliary-Pancreatic Sciences 22: 512–518.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Masamune, A. et al. 2008. Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. American Journal of Physiology - Gastrointestinal and Liver Physiology 295: 709–717.

  29. Kim, N. et al. 2009. Formation of vitamin A lipid droplets in pancreatic stellate cells requires albumin. 1382–1390. https://doi.org/10.1136/gut.2008.170233.

  30. Shimizu, K. 2008. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. Journal of Gastroenterology 43: 823–832.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, J.-M., and J. An. 2009. Cytokines, inflammation and pain. Int Anesth. Clin. 69: 482–489.

    Google Scholar 

  32. Meyer-Ingold, W., and W. Eichner. 1995. Platelet-derived growth factor. Cell Biology International 19: 389–398.

    Article  CAS  PubMed  Google Scholar 

  33. Poole, K.E.S., and J. Reeve. 2005. Parathyroid hormone – a bone anabolic and catabolic agent. Current Opinion in Pharmacology 5: 612–617.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, P.H., X. Chen, and X. He. 2013. Platelet-derived growth factors and their receptors: Structural and functional perspectives. Biochimica et Biophysica Acta 1834: 2176–2186.

    Article  CAS  PubMed  Google Scholar 

  35. Xue, J., et al. 2015. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nature Communications 6: 1–11.

    Article  CAS  Google Scholar 

  36. Apte, M.V., et al. 1999. Pancreatic stellate cells are activated by proinflammatory cytokines: Implications for pancreatic fibrogenesis. Gut 44: 534–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borkham-Kamphorst, E., and R. Weiskirchen. 2016. The PDGF system and its antagonists in liver fibrosis. Cytokine & Growth Factor Reviews 28: 53–61.

    Article  CAS  Google Scholar 

  38. Kordes, C., S. Brookmann, D. Häussinger, and H. Klonowski-Stumpe. 2005. Differential and synergistic effects of platelet-derived growth factor-BB and transforming growth factor-β1 on activated pancreatic stellate cells. Pancreas 31: 156–167.

    Article  CAS  PubMed  Google Scholar 

  39. Haber, P.S., et al. 1999. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. American Journal of Pathology 155: 1087–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramadori, G., and T. Armbrust. 2001. Cytokines in the liver. European Journal of Gastroenterology and Hepatology 13: 777–784.

    Article  CAS  PubMed  Google Scholar 

  41. Friedman, S.L. 1999. Cytokines and fibrogenesis. Seminars in Liver Disease 19: 129–140.

    Article  CAS  PubMed  Google Scholar 

  42. Mews, P., et al. 2002. Pancreatic stellate cells respond to inflammatory cytokines: Potential role in chronic pancreatitis. Gut 50: 535–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Formela, L.J., S.W. Galloway, and A.N. Kingsnorth. 1995. Inflammatory mediators in acute pancreatitis. British Journal of Surgery 82: 6–13.

    Article  CAS  PubMed  Google Scholar 

  44. Norman, J. 1998. The role of cytokines in the pathogenesis of acute pancreatitis. American Journal of Surgery 175: 76–83.

    Article  CAS  PubMed  Google Scholar 

  45. Vaccaro, M.I., et al. 2000. Pancreatic acinar cells submitted to stress activate TNF-alpha gene expression. Biochemical and Biophysical Research Communications 268: 485–490.

    Article  CAS  PubMed  Google Scholar 

  46. Matsuoka, M., N.T. Pham, and H. Tsukamoto. 1989. Differential effects of interleukin-1 alpha, tumor necrosis factor alpha, and transforming growth factor beta 1 on cell proliferation and collagen formation by cultured fat-storing cells. Liver 9: 71–78.

    Article  CAS  PubMed  Google Scholar 

  47. Zheng, M., H. Li, L. Sun, D.R. Brigstock, and R. Gao. 2021. Interleukin-6 participates in human pancreatic stellate cell activation and collagen I production via TGF-β1/Smad pathway. Cytokine 143: 155536.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Y.M., and E. Seki. 2015. TNFα in liver fibrosis. Curr. Pathobiol. Rep. 3: 253–261.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xiang, D.-M., et al. 2018. The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut 67: 1704–1715.

    Article  CAS  PubMed  Google Scholar 

  50. McCarroll, J.A., et al. 2004. Pancreatic stellate cell migration: Role of the phosphatidylinositol 3-kinase (PI3-kinase) pathway. Biochemical Pharmacology 67: 1215–1225.

    Article  CAS  PubMed  Google Scholar 

  51. Masamune, A., M. Satoh, K. Kikuta, N. Suzuki, and T. Shimosegawa. 2005. Activation of JAK-STAT pathway is required for platelet-derived growth factor-induced proliferation of pancreatic stellate cells. World Journal of Gastroenterology 11: 3385–3391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dooley, S., and P. Ten Dijke. 2012. TGF-β in progression of liver disease. Cell and Tissue Research 347: 245–256.

    Article  CAS  PubMed  Google Scholar 

  53. Reif, S., et al. 2003. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. Journal of Biological Chemistry 278: 8083–8090.

    Article  CAS  PubMed  Google Scholar 

  54. Shek, F.W., and R.C. Benyon. 2004. How can transforming growth factor beta be targeted usefully to combat liver fibrosis? European Journal of Gastroenterology and Hepatology 16: 123–126.

    Article  CAS  PubMed  Google Scholar 

  55. Molina, M. F., Abdelnabi, M. N., Fabre, T. and Shoukry, N. H. 2019. Type 3 cytokines in liver fibrosis and liver cancer. Cytokine 124: 0–1.

  56. Ninomiya-Tsuji, J., et al. 1999. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398: 252–256.

    Article  CAS  PubMed  Google Scholar 

  57. Tsukamoto, H. 1999. Cytokine regulation of hepatic stellate cells in liver fibrosis. Alcoholism, Clinical and Experimental Research 23: 911–916.

    Article  CAS  PubMed  Google Scholar 

  58. Zelová, H., and J. Hošek. 2013. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflammation Research 62: 641–651.

    Article  PubMed  Google Scholar 

  59. Apte, M.V., R.C. Pirola, and J.S. Wilson. 2006. Battle-scarred pancreas: Role of alcohol and pancreatic stellate cells in pancreatic fibrosis. Journal of Gastroenterology and Hepatology 21: 97–101.

    Article  Google Scholar 

  60. Manning, D. S. 2008. Diagnosis and quantitation of fibrosis. 1670–1681.

  61. Castera, L., and M. Pinzani. 2010. Biopsy and non-invasive methods for the diagnosis of liver fibrosis: Does it take two to tango? Gut 59: 861–866.

    Article  PubMed  Google Scholar 

  62. Afdhal, N.H., and D. Nunes. 2004. Evaluation of liver fibrosis: A concise review. American Journal of Gastroenterology 99: 1160–1174.

    Article  PubMed  Google Scholar 

  63. Patel, K., P. Bedossa, and L. Castera. 2015. Diagnosis of liver fibrosis: Present and future. Seminars in Liver Disease 35: 166–183.

    Article  CAS  PubMed  Google Scholar 

  64. Lurie, Y., M. Webb, R. Cytter-Kuint, S. Shteingart, and G.Z. Lederkremer. 2015. Non-invasive diagnosis of liver fibrosis and cirrhosis. World Journal of Gastroenterology 21: 11567–11583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, Z., et al. 2022. Serum biomarkers for liver fibrosis. Clinica Chimica Acta 537: 16–25.

    Article  CAS  Google Scholar 

  66. Inadomi, C., et al. 2020. Accuracy of the Enhanced Liver Fibrosis test, and combination of the Enhanced Liver Fibrosis and non-invasive tests for the diagnosis of advanced liver fibrosis in patients with non-alcoholic fatty liver disease. Hepatology Research 50: 682–692.

    Article  CAS  PubMed  Google Scholar 

  67. Vali, Y., et al. 2020. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis. Journal of Hepatology 73: 252–262.

    Article  PubMed  Google Scholar 

  68. Morling, J.R., and I.N. Guha. 2016. Biomarkers of liver fibrosis. Clinics in Liver Disease 7: 139–142.

    Article  Google Scholar 

  69. De Carli, M.A.L., et al. 2020. Performance of noninvasive scores for the diagnosis of advanced liver fibrosis in morbidly obese with nonalcoholic fatty liver disease. European Journal of Gastroenterology and Hepatology 32: 420–425.

    Article  PubMed  Google Scholar 

  70. Huang, C.T., C.K. Lin, T.H. Lee, and Y.J. Liang. 2020. Pancreatic fibrosis and chronic pancreatitis: Mini-review of non-histologic diagnosis for clinical applications. Diagnostics 10: 1–6.

    Article  Google Scholar 

  71. Tajiri, K., K. Kawai, and T. Sugiyama. 2017. Strain elastography for assessment of liver fibrosis and prognosis in patients with chronic liver diseases. Journal of Gastroenterology 52: 724–733.

    Article  CAS  PubMed  Google Scholar 

  72. Lin, Y., H. Li, C. Jin, H. Wang, and B. Jiang. 2020. The diagnostic accuracy of liver fibrosis in non-viral liver diseases using acoustic radiation force impulse elastography: A systematic review and meta-analysis. PLoS ONE 15: 1–20.

    CAS  Google Scholar 

  73. De Lédinghen, V., and J. Vergniol. 2010. Transient elastography for the diagnosis of liver fibrosis. Expert Review of Medical Devices 7: 811–823.

    Article  PubMed  Google Scholar 

  74. Andersen, E.S., P.B. Christensen, and N. Weis. 2009. Transient elastography for liver fibrosis diagnosis. European Journal of Internal Medicine 20: 339–342.

    Article  PubMed  Google Scholar 

  75. Kuwahara, T., et al. 2016. Quantitative evaluation of pancreatic tumor fibrosis using shear wave elastography. Pancreatology 16: 1063–1068.

    Article  PubMed  Google Scholar 

  76. Singh, V.K., D. Yadav, and P.K. Garg. 2019. Diagnosis and management of chronic pancreatitis: A review. JAMA - J. Am. Med. Assoc. 322: 2422–2434.

    Article  CAS  Google Scholar 

  77. Bieliuniene, E., et al. 2019. Magnetic resonance imaging as a valid noninvasive tool for the assessment of pancreatic fibrosis. Pancreas 48: 85–93.

    Article  PubMed  Google Scholar 

  78. Petitclerc, L., G. Sebastiani, G. Gilbert, G. Cloutier, and A. Tang. 2017. Liver fibrosis: Review of current imaging and MRI quantification techniques. Journal of Magnetic Resonance Imaging 45: 1276–1295.

    Article  PubMed  Google Scholar 

  79. Zhou, I.Y., et al. 2020. Advanced MRI of liver fibrosis and treatment response in a rat model of nonalcoholic steatohepatitis. Radiology 296: 67–75.

    Article  PubMed  Google Scholar 

  80. Gilbert, Ã. G., Nguyen, Ã. B. N. and Tang, A. 2017. Liver fibrosis quantification by magnetic resonance imaging. XX: 1–13.

  81. Itoh, Y., et al. 2014. Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens). Journal of Gastroenterology 49: 1183–1192.

    Article  PubMed  Google Scholar 

  82. Schrader, H., et al. 2012. Diagnostic value of quantitative EUS elastography for malignant pancreatic tumors: Relationship with pancreatic fibrosis. Ultraschall der Medizin 33: 196–201.

    Article  Google Scholar 

  83. Kikuyama, M., et al. 2018. Early diagnosis to improve the poor prognosis of pancreatic cancer. Cancers (Basel). 10: 1–9.

    Article  Google Scholar 

  84. Weiskirchen, R., and F. Tacke. 2016. Liver fibrosis: From pathogenesis to novel therapies. Digestive Diseases 34: 410–422.

    Article  PubMed  Google Scholar 

  85. Sun, M., and T. Kisseleva. 2015. Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology 39: S60–S63.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kisseleva, T. and Brenner, D. A. 2006. Hepatic stellate cells and the reversal of fibrosis. Journal of Gastroenterology and Hepatology 2.

  87. Iredale, J.P. 2001. Hepatic stellate cell behavior during resolution of liver injury. Seminars in Liver Disease 21: 427–436.

    Article  CAS  PubMed  Google Scholar 

  88. Kisseleva, T., and D.A. Brenner. 2008. Mechanisms of fibrogenesis. Experimental Biology and Medicine 233: 109–122.

    Article  CAS  PubMed  Google Scholar 

  89. Gao, B., S. Radaeva, and O. Park. 2009. Liver natural killer and natural killer T cells: Immunobiology and emerging roles in liver diseases. Journal of Leukocyte Biology 86: 513–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tandon, M., et al. 2019. Prolactin promotes fibrosis and pancreatic cancer progression. Cancer Research 79: 5316–5327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Giannitrapani, L., et al. 2014. Nanotechnology applications for the therapy of liver fibrosis. 20: 7242–7251.

    Google Scholar 

  92. McCarroll, J.A., et al. 2006. Vitamin A inhibits pancreatic stellate cell activation: Implications for treatment of pancreatic fibrosis. Gut 55: 79–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rickmann, M., E.C. Vaquero, J.R. Malagelada, and X. Molero. 2007. Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway. Gastroenterology 132: 2518–2532.

    Article  CAS  PubMed  Google Scholar 

  94. Shimizu, K., K. Shiratori, M. Kobayashi, and H. Kawamata. 2004. Troglitazone inhibits the progression of chronic pancreatitis and the profibrogenic activity of pancreatic stellate cells via a PPARγ- independent mechanism. Pancreas 29: 67–74.

    Article  CAS  PubMed  Google Scholar 

  95. Zeisberg, M., and R. Kalluri. 2013. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. American Journal of Physiology. Cell Physiology 304: C216–C225

  96. Masamune, A., et al. 2006. Curcumin blocks activation of pancreatic stellate cells. Journal of Cellular Biochemistry 97: 1080–1093.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Authors like to thank VIT University, Vellore, India for providing all necessary support and Indian Council of Medical Research, F.N. 5/9/1328/2020-Nut, F.N. 5/9/1328/2020-Nut.

Author information

Authors and Affiliations

Authors

Contributions

Venkatraman M: supervision, conceptualization, and funding acquisition.

Tiasha Dasgupta: literature search, analysis, and writing original draft preparation.

Corresponding author

Correspondence to Venkatraman Manickam.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, T., Manickam, V. Fibrosis in Liver and Pancreas: a Review on Pathogenic Significance, Diagnostic Options, and Current Management Strategies. Inflammation 46, 824–834 (2023). https://doi.org/10.1007/s10753-022-01776-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01776-0

KEY WORDS

Navigation