Skip to main content
Log in

Differentiation Kinetics of Hematopoietic Stem and Progenitor Cells In Vivo Are Not Affected by β-Glucan Treatment in Trained Immunity

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Agonists of trained immunity induce epigenetic changes in hematopoietic stem and progenitor cells (HSPCs) to generate long-lasting immune protection. Although trained HSPCs generate myeloid cells with increased responsiveness to secondary challenges, whether their differentiation kinetics is affected by prior exposure to inducers of trained immunity remains elusive. Here, we used lineage tracing to examine the cell fates of endothelial protein C receptor-positive hematopoietic stem cells (EPCR+ HSCs) and fms-like tyrosine kinase 3-positive multipotent progenitor cells (Flt3+ MPPs) in β-glucan-induced trained immunity. We found that although β-glucan triggered the expected expansion of myeloid progenitors, the differentiation behaviors of EPCR+ HSCs and Flt3+ MPPs in multiple cycles of hematopoietic regeneration were hardly affected. Thus, our results rule out changed kinetics in cell differentiation by EPCR+ HSC and Flt3+ MPP as the cause of enhanced myelopoiesis upon secondary immune challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The original data reported in the paper and related materials will be available upon email request made to the corresponding author.

References

  1. Delves, P.J. and I.M. Roitt. 2000. The immune system. First of two parts. The New England Journal of Medicine 343(1): 37–49. https://doi.org/10.1056/NEJM200007063430107.

  2. Medzhitov, R., and C. Janeway Jr. 2000. Innate immune recognition: Mechanisms and pathways. Immunological Reviews 173: 89–97. https://doi.org/10.1034/j.1600-065x.2000.917309.x.

    Article  CAS  PubMed  Google Scholar 

  3. Parkin, J., and B. Cohen. 2001. An overview of the immune system. The Lancet 357 (9270): 1777–1789. https://doi.org/10.1016/S0140-6736(00)04904-7.

    Article  CAS  Google Scholar 

  4. Bonilla, F.A., and H.C. Oettgen. 2010. Adaptive immunity. The Journal of Allergy and Clinical Immunology 125 (2 Suppl 2): S33-40. https://doi.org/10.1016/j.jaci.2009.09.017.

    Article  PubMed  Google Scholar 

  5. Sun, J.C., J.N. Beilke, and L.L. Lanier. 2009. Adaptive immune features of natural killer cells. Nature 457 (7229): 557–561. https://doi.org/10.1038/nature07665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodrigues, J., et al. 2010. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329 (5997): 1353–1355. https://doi.org/10.1126/science.1190689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun, J.C., J.N. Beilke, and L.L. Lanier. 2010. Immune memory redefined: Characterizing the longevity of natural killer cells. Immunological Reviews 236: 83–94. https://doi.org/10.1111/j.1600-065X.2010.00900.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ifrim, D.C., et al. 2014. Trained immunity or tolerance: Opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clinical and Vaccine Immunology 21 (4): 534–545. https://doi.org/10.1128/CVI.00688-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Netea, M.G., and R. van Crevel. 2014. BCG-induced protection: Effects on innate immune memory. Seminars in Immunology 26 (6): 512–517. https://doi.org/10.1016/j.smim.2014.09.006.

    Article  CAS  PubMed  Google Scholar 

  10. Saeed, S., et al. 2014. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345 (6204): 1251086. https://doi.org/10.1126/science.1251086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bekkering, S., et al. 2016. In vitro experimental model of trained innate immunity in human primary monocytes. Clinical and Vaccine Immunology 23 (12): 926–933. https://doi.org/10.1128/CVI.00349-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arts, R.J., et al. 2016. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metabolism 24 (6): 807–819. https://doi.org/10.1016/j.cmet.2016.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saz-Leal, P., et al. 2018. Targeting SHIP-1 in myeloid cells enhances trained immunity and boosts response to infection. Cell Reports 25 (5): 1118–1126. https://doi.org/10.1016/j.celrep.2018.09.092.

    Article  CAS  PubMed  Google Scholar 

  14. Netea, M.G., J. Quintin, and J.W. van der Meer. 2011. Trained immunity: A memory for innate host defense. Cell Host & Microbe 9 (5): 355–361. https://doi.org/10.1016/j.chom.2011.04.006.

    Article  CAS  Google Scholar 

  15. Netea, M.G., et al. 2016. Trained immunity: a program of innate immune memory in health and disease. Science 352(6284): aaf1098. https://doi.org/10.1126/science.aaf1098.

  16. Netea, M.G., et al. 2020. Defining trained immunity and its role in health and disease. Nature Reviews Immunology 20 (6): 375–388. https://doi.org/10.1038/s41577-020-0285-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Divangahi, M., et al. 2021. Trained immunity, tolerance, priming and differentiation: Distinct immunological processes. Nature Immunology 22 (1): 2–6. https://doi.org/10.1038/s41590-020-00845-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lowry, L.E., and W.A. Zehring. 2017. Potentiation of natural killer cells for cancer immunotherapy: A review of literature. Frontiers in Immunology 8: 1061. https://doi.org/10.3389/fimmu.2017.01061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel, A.A., et al. 2017. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. Journal of Experimental Medicine 214 (7): 1913–1923. https://doi.org/10.1084/jem.20170355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson, A., et al. 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135 (6): 1118–1129. https://doi.org/10.1016/j.cell.2008.10.048.

    Article  CAS  PubMed  Google Scholar 

  21. Trumpp, A., M. Essers, and A. Wilson. 2010. Awakening dormant haematopoietic stem cells. Nature Reviews Immunology 10 (3): 201–209. https://doi.org/10.1038/nri2726.

    Article  CAS  PubMed  Google Scholar 

  22. Manz, M.G., and S. Boettcher. 2014. Emergency granulopoiesis. Nature Reviews Immunology 14 (5): 302–314. https://doi.org/10.1038/nri3660.

    Article  CAS  PubMed  Google Scholar 

  23. Kaufmann, E., et al. 2018. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172(1–2): 176–190 e19. https://doi.org/10.1016/j.cell.2017.12.031.

  24. Mitroulis, I., et al. 2018. Modulation of Myelopoiesis progenitors is an integral component of trained immunity. Cell 172(1–2): 147–161 e12. https://doi.org/10.1016/j.cell.2017.11.034.

  25. de Laval, B., et al. 2020. C/EBPbeta-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell 26 (5): 793. https://doi.org/10.1016/j.stem.2020.03.014.

    Article  CAS  PubMed  Google Scholar 

  26. Arts, R.J.W., et al. 2018. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23(1): 89–100 e5. https://doi.org/10.1016/j.chom.2017.12.010.

  27. Christ, A., et al. 2018. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172(1–2): 162–175 e14. https://doi.org/10.1016/j.cell.2017.12.013.

  28. Zhang, Y., et al. 2018. Hematopoietic hierarchy - an updated roadmap. Trends in Cell Biology 28 (12): 976–986. https://doi.org/10.1016/j.tcb.2018.06.001.

    Article  PubMed  Google Scholar 

  29. Patel, S.H., et al. 2022. Lifelong multilineage contribution by embryonic-born blood progenitors. Nature 606 (7915): 747–753. https://doi.org/10.1038/s41586-022-04804-z.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng, X., et al. 2019. Embryonic lineage tracing with Procr-CreER marks balanced hematopoietic stem cell fate during entire mouse lifespan. Journal of Genetics and Genomics 46 (10): 489–498. https://doi.org/10.1016/j.jgg.2019.10.005.

    Article  PubMed  Google Scholar 

  31. Garcia-Valtanen, P., et al. 2017. Evaluation of trained immunity by beta-1, 3 (d)-glucan on murine monocytes in vitro and duration of response in vivo. Immunology and Cell Biology 95 (7): 601–610. https://doi.org/10.1038/icb.2017.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wright, D.E., et al. 2001. Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood 97 (8): 2278–2285. https://doi.org/10.1182/blood.v97.8.2278.

    Article  CAS  PubMed  Google Scholar 

  33. Adolfsson, J., et al. 2005. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121 (2): 295–306. https://doi.org/10.1016/j.cell.2005.02.013.

    Article  CAS  PubMed  Google Scholar 

  34. Sun, J., et al. 2014. Clonal dynamics of native haematopoiesis. Nature 514 (7522): 322–327. https://doi.org/10.1038/nature13824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanayama, M., et al. 2020. CD86-based analysis enables observation of bona fide hematopoietic responses. Blood 136 (10): 1144–1154. https://doi.org/10.1182/blood.2020004923.

    Article  PubMed  Google Scholar 

  36. Wang, D., et al. 2015. Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517 (7532): 81–84. https://doi.org/10.1038/nature13851.

    Article  CAS  PubMed  Google Scholar 

  37. Balazs, A.B., et al. 2006. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107 (6): 2317–2321. https://doi.org/10.1182/blood-2005-06-2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gekas, C., and T. Graf. 2013. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 121 (22): 4463–4472. https://doi.org/10.1182/blood-2012-09-457929.

    Article  CAS  PubMed  Google Scholar 

  39. Haas, S., et al. 2015. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17 (4): 422–434. https://doi.org/10.1016/j.stem.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  40. Miyawaki, K., et al. 2015. CD41 marks the initial myelo-erythroid lineage specification in adult mouse hematopoiesis: Redefinition of murine common myeloid progenitor. Stem Cells 33 (3): 976–987. https://doi.org/10.1002/stem.1906.

    Article  CAS  PubMed  Google Scholar 

  41. Weissman, I.L. 2000. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 100 (1): 157–168. https://doi.org/10.1016/s0092-8674(00)81692-x.

    Article  CAS  PubMed  Google Scholar 

  42. Kondo, M., et al. 2003. Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annual Review of Immunology 21: 759–806. https://doi.org/10.1146/annurev.immunol.21.120601.141007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Yi Zeng for the Procr-CreER mouse line and Dr. Fernando Camargo for the Flt3-CreER mouse line, members of the Sun group for discussion and support, the Molecular and Cell Biology Core Facility (MCBCF) and Animal Core Facility at the School of Life Science and Technology, ShanghaiTech University, and the Animal Facility at the National Facility for Protein Science in Shanghai (NFPS), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science for providing technical service.

Funding

This work was supported by the National Key R&D Program of China (2020YFA0710801) and the National Natural Science Foundation of China (81970102).

Author information

Authors and Affiliations

Authors

Contributions

J. Sun and F. Li designed the experiments. F. Li performed the experiment. F. Li and J. Sun analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Jianlong Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 293 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Sun, J. Differentiation Kinetics of Hematopoietic Stem and Progenitor Cells In Vivo Are Not Affected by β-Glucan Treatment in Trained Immunity. Inflammation 46, 718–729 (2023). https://doi.org/10.1007/s10753-022-01767-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01767-1

KEY WORDS

Navigation