Skip to main content

Advertisement

Log in

Hederagenin Suppresses Inflammation and Cartilage Degradation to Ameliorate the Progression of Osteoarthritis: An In vivo and In vitro Study

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA), a common degenerative joint disease, is characterized by the progressive degradation of articular cartilage and inflammation. Hederagenin (HE) is a pentacyclic triterpenoid saponin extracted from many herb plants. It has anti-inflammatory, anti-lipid peroxidative, anti-cancer, and neuroprotective activities. However, its effect on OA has not been investigated. Our study found that HE may be a potential anti-OA drug. In vitro, HE could suppress extracellular matrix (ECM) degradation via up-regulating aggrecan and Collagen II levels as well as downregulating MMPs and ADAMTS5 levels. It could also reduce proinflammatory and inflammatory cytokines or enzymes production, including TNF-α, IL-6, iNOS, COX-2, NO, and PGE2. Besides, HE markedly reduced IL-1β-induced C28/I2 cell apoptosis and ROS accumulation. Mechanistically, HE exerted chondroprotective and anti-inflammatory effects by partly inhibiting JAK2/STAT3/MAPK signalling pathway and the crosstalk of the two pathways. Also, HE exhibited anti-apoptotic and anti-oxidative effect via targeting Keap1-Nrf2/HO-1/ROS/Bax/Bcl-2 axis. In vivo, HE significantly reduced monosodium iodoacetate (MIA) induced cartilage destruction of rats with a lower OARSI score and inflammatory cytokine levels, further demonstrating its protective effects in OA progression. These results suggest that HE is a potential compound for the development of drugs to treat OA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

DATA AVAILABILITY

The data used to support the current study are available from the corresponding author on reasonable request.

References

  1. Ding, S.L., Z.Y. Pang, X.M. Chen, Z. Li, X.X. Liu, Q.L. Zhai, J.M. Huang, and Z.Y. Ruan. 2020. Urolithin a attenuates IL-1β-induced inflammatory responses and cartilage degradation via inhibiting the MAPK/NF-κB signalling pathways in rat articular chondrocytes. Journal of Inflammation-London 17 (13): 3. https://doi.org/10.1186/s12950-020-00242-8.

    Article  CAS  Google Scholar 

  2. Wang, H., Z. Jiang, Z. Pang, G. Qi, B. Hua, Z. Yan, and H. Yuan. 2021. Engeletin protects against TNF-α-induced apoptosis and reactive oxygen species generation in chondrocytes and alleviates osteoarthritis in vivo. Journal of Inflammation Research 14: 745–760. https://doi.org/10.2147/JIR.S297166.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, H.W., A.H. Lin, H.C. Chu, C.C. Li, C.W. Tsai, C.Y. Chao, C.J. Wang, C.K. Lii, and K.L. Liu. 2011. Inhibition of TNF-α-induced inflammation by andrographolide via down-regulation of the PI3K/Akt signalling pathway. Jounal Nature Product 74 (11): 2408–2413. https://doi.org/10.1021/np200631v.

    Article  CAS  Google Scholar 

  4. Fei, J., B. Liang, C. Jiang, H. Ni, and L. Wang. 2019. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomedicine & Pharmacotherapy 109: 1586–1592. https://doi.org/10.1016/j.biopha.2018.09.161.

    Article  CAS  Google Scholar 

  5. Chen, X., Z. Li, H. Hong, N. Wang, J. Chen, S. Lu, H. Zhang, X. Zhang, and C. Bei. 2021. Xanthohumol suppresses inflammation in chondrocytes and ameliorates osteoarthritis in mice. Biomedicine & Pharmacotherapy 137: 111238. https://doi.org/10.1016/j.biopha.2021.111238.

    Article  CAS  Google Scholar 

  6. Kloppenburg, M., and F. Berenbaum. 2020. Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthritis Cartilage 28 (3): 242–248. https://doi.org/10.1016/j.joca.2020.01.002.

    Article  CAS  PubMed  Google Scholar 

  7. Leopoldino, A.O., G.C. MacHado, P.H. Ferreira, M.B. Pinheiro, R. Day, A.J. McLachlan, D.J. Hunter, and M.L. Ferreira. 2019. Paracetamol versus placebo for knee and hip osteoarthritis. Cochrane Database of Systematic Reviews 2 (2): CD013273. https://doi.org/10.1002/14651858.CD013273.

  8. Dong, F.Y., G.H. Cui, Y.H. Zhang, R.N. Zhu, X.J. Wu, T.T. Sun, and W. Wang. 2010. Clematomandshurica saponin E, a new triterpenoid saponin from Clematis mandshurica. Journal of Asian Natural Products Research 12 (12): 1061–1068. https://doi.org/10.1080/10286020.2010.533661.

    Article  CAS  PubMed  Google Scholar 

  9. Li, L., W.H. Lin, P. Yan, R.T. Zhan, and H.F. Pan. 2013. Content measurement of hederagen and oleanolic acid in RADIX ET RHIZOMA CLEMATIDIS from different areas. Journal of Anhui Agricultural Sciences 41 (7): 2910–2911 (In Chinese).

    CAS  Google Scholar 

  10. Zeng, J., T. Huang, M. Xue, J. Chen, L. Feng, R. Du, and Y. Feng. 2018. Current knowledge and development of hederagenin as a promising medicinal agent: A comprehensive review. RSC Advances 8 (43): 24188–24202. https://doi.org/10.1039/c8ra03666g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma, W., Q. Huang, G. Xiong, L. Deng, and Y. He. 2020. The protective effect of Hederagenin on pulmonary fibrosis by regulating the Ras/JNK/NFAT4 axis in rats. Bioscience, Biotechnology, and Biochemistry 84 (6): 1131–1138. https://doi.org/10.1080/09168451.2020.1721263.

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Z., H. Wang, C. Zhang, and L.-E. Yang. 2020. Hederagenin modulates M1 microglial inflammatory responses and neurite outgrowth. Nature Product Communications 15 (8): 1–10. https://doi.org/10.1177/1934578X20946252.

    Article  Google Scholar 

  13. Wang, K., X. Liu, Q. Liu, and I. ht. Ho, X. Wei, T. Yin, Y. Zhan, W.J. Zhang, W.B. Zhang, B. Chen, J. Gu, Y. Tan, L. Zhang, M.T. Chan, W.K. Wu, B. Du, and J. Xiao. 2020. Hederagenin potentiated cisplatin- and paclitaxel-mediated cytotoxicity by impairing autophagy in lung cancer cells. Cell Death & Disease 11 (8): 611. https://doi.org/10.1038/s41419-020-02880-5.

    Article  CAS  Google Scholar 

  14. Kim, G.J., D.H. Song, H.S. Yoo, K.H. Chung, K.J. Lee, and J.H. An. 2017. Hederagenin supplementation alleviates the pro-inflammatory and apoptotic response to alcohol in rats. Nutrients 9 (1): 41. https://doi.org/10.3390/nu9010041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu, H., L. Song, X. Cao, W. Li, Y. Zhao, J. Chen, J. Li, Y. Chen, W. Yu, and Y. Xu. 2020. Hederagenin attenuates cerebral ischaemia/reperfusion injury by regulating MLK3 signalling. Frontiers in Pharmacology 11: 1173. https://doi.org/10.3389/fphar.2020.01173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian, K., Y. Su, J. Ding, D. Wang, Y. Zhan, Y. Li, J. Liang, X. Lin, F. Song, Z. Wang, J. Xu, Q. Liu, and J. Zhao. 2020. Hederagenin protects mice against ovariectomy-induced bone loss by inhibiting RANKL-induced osteoclastogenesis and bone resorption. Life Science 244: 117336. https://doi.org/10.1016/j.lfs.2020.117336.

    Article  CAS  Google Scholar 

  17. Kim, E.H., S. Baek, D. Shin, J. Lee, and J.L. Roh. 2017. Hederagenin induces apoptosis in cisplatin-resistant head and neck cancer cells by inhibiting the Nrf2-ARE antioxidant pathway. Oxidative Medicine and Cellular Longevity. 2017: 5498908. https://doi.org/10.1155/2017/5498908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ali, A., Y. Park, J. Lee, H.J. An, J.S. Jin, J.H. Lee, J. Chang, D.K. Kim, B. Goo, Y.C. Park, K.H. Leem, S. Seong, and W. Kim. 2021. In vitro study of licorice on IL-1β-induced chondrocytes and in silico approach for osteoarthritis. Pharmaceuticals 14: 1337. https://doi.org/10.3390/ph14121337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, Z., D. Meng, G. Li, J. Xu, K. Tian, and Y. Li. 2015. Celecoxib combined with diacerein effectively alleviates osteoarthritis in rats via regulating JNK and p38MAPK signaling pathways. Inflammation 38 (4): 1563–1572. https://doi.org/10.1007/s10753-015-0131-3.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, M., H. Wang, M. Wang, Y. Liu, Y. Liao, Y. Liu, Y. Zhang, T. Ma, and J. Chen. 2020. Reduced expression of α2 integrin is involved in T-2 toxin-induced matrix degradation in C28/I2 cells and cartilages from rats administrated with T-2 toxin. Toxicon 188: 127–133. https://doi.org/10.1016/j.toxicon.2020.10.016.

    Article  CAS  PubMed  Google Scholar 

  21. Jain, A., R. Singh, S. Singh, and S. Singh. 2015. Diacerein protects against iodoacetate-induced osteoarthritis in the femorotibial joints of rats. The Journal of Biomedical Research 29 (5): 405–413. https://doi.org/10.7555/JBR.29.20130092.

    Article  PubMed  Google Scholar 

  22. Pradit, W., S. Chomdej, K. Nganvongpanit, and S. Ongchai. 2015. Chondroprotective potential of Phyllanthus amarus Schum. Thonn. in experimentally induced cartilage degradation in the explants culture model. In Vitro Cellular and Developmental Biology - Anima 51 (4), 336–344. https://doi.org/10.1007/s11626-014-9846-y.

  23. Shin, H., H. Park, N. Shin, J. Shin, D. Gwon, H. Kwon, Y. Yin, J. Hwang, J. Hong, J. Heo, C. Kim, Y. Joo, Y. Kim, J. Kim, J. Beom, and D. Kim. 2020. p66shc siRNA nanoparticles ameliorate chondrocytic mitochondrial dysfunction in osteoarthritis. International Journal of Nanomedicine 15: 2379–2390. https://doi.org/10.2147/IJN.S234198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pritzker, K.P.H., S. Gay, S.A. Jimenez, K. Ostergaard, J.P. Pelletier, K. Revell, and D. Salter. 2006. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthritis and Cartilage 14: 13–29. https://doi.org/10.1016/j.joca.2005.07.014.

    Article  CAS  PubMed  Google Scholar 

  25. Groc, L., L. Bezin, H. Jiang, T.S. Jackson, R.A. Levine, and J.D. Dingell. 2001. Bax, Bcl-2, and cyclin expression and apoptosis in rat substantia nigra during development. Neuroscience Letters. 306 (3): 198–202. https://doi.org/10.1016/s0304-3940(01)01897-3.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, B.W., Y. Jiang, Z.L. Yao, P.S. Chen, B. Yu, and S.N. Wang. 2019. Aucubin protects chondrocytes against IL-1β-induced apoptosis in vitro and inhibits osteoarthritis in mice model. Drug Design, Development and Therapy 13: 3529–3538. https://doi.org/10.2147/DDDT.S210220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hwang, H.S., and H.A. Kim. 2015. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. International Journal of Molecular Sciences 16 (11): 26035–26054. https://doi.org/10.3390/ijms161125943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Ghafar, O.A.M.A., G.K. Helal, and A.M. Abo-Youssef. 2020. Apixaban exhibits anti-arthritic effects by inhibiting activated factor X-mediated JAK2/STAT3 and MAPK phosphorylation pathways. Inflammopharmacology 28 (5): 1253–1267. https://doi.org/10.1007/s10787-020-00693-8.

    Article  CAS  PubMed  Google Scholar 

  29. Qiao, Z., J. Tang, W. Wu, J. Tang, and M. Liu. 2019. Acteoside inhibits inflammatory response via JAK/STAT signaling pathway in osteoarthritic rats. BMC Complementary and Alternative Medicine 19 (1): 264. https://doi.org/10.1186/s12906-019-2673-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, B., Z. Shao, M. Gu, L. Ni, Y. Shi, Y. Yan, A. Wu, H. Jin, J. Chen, X. Pan, and D. Xu. 2020. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis. Journal of Cellular Physiology 236: 4369–4386. https://doi.org/10.1002/jcp.30154.

    Article  CAS  PubMed  Google Scholar 

  31. Pan, X., T. Chen, Z. Zhang, X. Chen, C. Chen, L. Chen, X. Wang, and X. Ying. 2019. Activation of Nrf2/HO-1 signal with Myricetin for attenuating ECM degradation in human chondrocytes and ameliorating the murine osteoarthritis. International Immunopharmacology 75: 105742. https://doi.org/10.1016/j.intimp.2019.105742.

    Article  CAS  PubMed  Google Scholar 

  32. Khan, N.M., I. Ahmad, and T.M. Haqqi. 2018. Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radical Biology and Medicine 116: 159–171. https://doi.org/10.1016/j.freeradbiomed.2018.01.013.

    Article  CAS  PubMed  Google Scholar 

  33. Sun, K., J. Luo, X. Jing, J. Guo, X. Yao, X. Hao, Y. Ye, S. Liang, J. Lin, G. Wang, and F. Guo. 2019. Astaxanthin protects against osteoarthritis via Nrf2: A guardian of cartilage homeostasis. Aging (Albany NY). 2019, 11(22), 10513–10531. https://doi.org/10.18632/aging.102474.

  34. Yan, Z., W. Qi, J. Zhan, Z. Lin, J. Lin, X. Xue, X. Pan, and Y. Zhou. 2020. Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation. Journal of Cellular and Molecular Medicine 24 (22): 13046–13057. https://doi.org/10.1111/jcmm.15905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ju, L.PHu., P. Chen, X. Xue, Z. Li, F. He, Z. Qiu, J. Cheng, and F. Huang. 2020. Huoxuezhitong capsule ameliorates MIA-induced osteoarthritis of rats through suppressing PI3K/Akt/NF-κB pathway. Biomedicine & Pharmacotherapy 129: 110471. https://doi.org/10.1016/j.biopha.2020.110471.

    Article  CAS  Google Scholar 

  36. Liu, M., S. Zhong, R. Kong, H. Shao, C. Wang, H. Piao, W. Lv, X. Chu, and Y. Zhao. 2017. Paeonol alleviates interleukin-1β-induced inflammatory responses in chondrocytes during osteoarthritis. Biomedicine & Pharmacotherapy 95: 914–921. https://doi.org/10.1016/j.biopha.2017.09.011.

    Article  CAS  Google Scholar 

  37. Vincent, T.L. 2019. IL-1 in osteoarthritis: Time for a critical review of the literature. F1000Research 8: 934. https://doi.org/10.12688/f1000research.

  38. Sokolove, J., and C.M. Lepus. 2013. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease 5 (2): 77–94. https://doi.org/10.1177/1759720X12467868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi, Y., X. Hu, J. Cheng, X. Zhang, F. Zhao, W. Shi, B. Ren, H. Yu, P. Yang, Z. Li, Q. Liu, Z. Liu, X. Duan, X. Fu, J. Zhang, J. Wang, and Y. Ao. 2019. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nature Communications 10 (1): 1914. https://doi.org/10.1038/s41467-019-09839-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, S.A., B.R. Park, S.M. Moon, J.H. Hong, D.K. Kim, and C.S. Kim. 2020. Chondroprotective effect of cynaroside in IL-1β-induced primary rat chondrocytes and organ explants via NF-κB and MAPK signaling inhibition. Oxidative Medicine and Cellular Longevity 2020: 9358080. https://doi.org/10.1155/2020/9358080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burrage, P.S., K.S. Mix, and C.E. Brinckerhoff. 2006. Matrix metalloproteinases: Role in arthritis. Frontiers in Bioscience-Landmark 11: 529–543. https://doi.org/10.2741/1817.

    Article  CAS  Google Scholar 

  42. Majumdar, M.K., R. Askew, S. Schelling, N. Stedman, T. Blanchet, B. Hopkins, E.A. Morris, and S.S. Glasson. 2007. Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis & Rheumatology 56 (11): 3670–3674. https://doi.org/10.1002/art.23027.

    Article  CAS  Google Scholar 

  43. Jenei-Lanzl, Z., A. Meurer, and F. Zaucke. 2019. Interleukin-1β signaling in osteoarthritis - Chondrocytes in focus. Cellular Signalling. 53: 212–223. https://doi.org/10.1016/j.cellsig.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  44. Lim, H., D.S. Min, Y. Kang, H.W. Kim, K.H. Son, and H.P. Kim. 2015. Inhibition of matrix metalloproteinase-13 expression in IL-1β-treated articular chondrocytes by a steroidal saponin, spicatoside A, and its cellular mechanisms of action. Archives of Pharmacal Research 38 (6): 1108–1116. https://doi.org/10.1007/s12272-015-0581-z.

    Article  CAS  PubMed  Google Scholar 

  45. Dong, H.W., K. Wang, X.X. Chang, F.F. Jin, Q. Wang, X.F. Jiang, J.R. Liu, Y.H. Wu, and C. Yang. 2019. Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity. Archives of Toxicology 93 (10): 2993–3003. https://doi.org/10.1007/s00204-019-02550-2.

    Article  CAS  PubMed  Google Scholar 

  46. Nieminen, R., S. Leinonen, A. Lahti, K. Vuolteenaho, U. Jalonen, H. Kankaanranta, M.B. Goldring, and E. Moilanen. 2005. Inhibitors of mitogen-activated protein kinases downregulate COX-2 expression in human chondrocytes. Mediators of Inflammation 2005 (5): 249–255. https://doi.org/10.1155/MI.2005.249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lahti, A., H. Kankaanranta, and E. Moilanen. 2002. P38 mitogen-activated protein kinase inhibitor SB203580 has a bi-directional effect on iNOS expression and NO production. European Journal of Pharmacology 454: 115–123. https://doi.org/10.1016/s0014-2999(02)02490-1.

    Article  CAS  PubMed  Google Scholar 

  48. Huang, T.C., W.T. Chang, Y.C. Hu, B.S. Hsieh, H.L. Cheng, J.H. Yen, P.R. Chiu, and K.L. Chang. 2018. Zinc protects articular chondrocytes through changes in Nrf2-mediated antioxidants, cytokines and matrix metalloproteinases. Nutrients 10 (4): 471. https://doi.org/10.3390/nu10040471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, P., A. Okun, J. Ren, R.C. Guo, M.H. Ossipov, J. Xie, T. King, and F. Porreca. 2011. Ongoing pain in the MIA model of osteoarthritis. Neuroscience Letters 493 (3): 72–75. https://doi.org/10.1016/j.neulet.2011.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Musumeci, G., P. Castrogiovanni, F.M. Trovato, A.M. Weinberg, M.K. Al-Wasiyah, M.H. Alqahtani, and A. Mobasheri. 2015. Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. International Journal of Molecular Sciences 16 (9): 20560–20575. https://doi.org/10.3390/ijms160920560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Altay, M.A., C. Ertürk, A. Bilge, M. Yaptı, A. Levent, and N. Aksoy. 2015. Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: Relationships with radiographic severity and clinical parameters. Rheumatology International 35 (10): 1725–1731. https://doi.org/10.1007/s00296-015-3290-5.

    Article  CAS  PubMed  Google Scholar 

  52. Arra, M., G. Swarnkar, K. Ke, J.E. Otero, J. Ying, X. Duan, T. Maruyama, M.F. Rai, R.J. O’Keefe, G. Mbalaviele, J. Shen, and Y. Abu-Amer. 2020. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nature Communications 11: 3427. https://doi.org/10.1038/s41467-020-17242-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kotlo, K.U., F. Yehiely, E. Efimova, H. Harasty, B. Hesabi, K. Shchors, P. Einat, A. Rozen, E. Berent, and L.P. Deiss. 2003. Nrf2 is an inhibitor of the Fas pathway as identified by Achilles’ Heel Method, a new function-based approach to gene identification in human cells. Oncogene 22 (6): 797–806. https://doi.org/10.1038/sj.onc.1206077.

    Article  CAS  PubMed  Google Scholar 

  54. Peng, Y.J.J.WLu., C.H. Lee, H.S. Lee, Y.H. Chu, Y.J. Ho, F.C. Liu, C.J. Huang, C.C. Wu, and C.C. Wang. 2021. Cardamonin attenuates inflammation and oxidative stress in interleukin-1β-stimulated osteoarthritis chondrocyte through the Nrf2 pathway. Antioxidants 10 (6): 862. https://doi.org/10.3390/antiox10060862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wruck, C.J., A. Fragoulis, A. Gurzynski, L.O. Brandenburg, Y.W. Kan, K. Chan, J. Hassenpflug, S. Freitag-Wolf, D. Varoga, S. Lippross, and T. Pufe. 2011. Role of oxidative stress in rheumatoid arthritis: Insights from the Nrf2-knockout mice. Annals of the Rheumatic Diseases 70 (5): 844–850. https://doi.org/10.1136/ard.2010.132720.

    Article  CAS  PubMed  Google Scholar 

  56. Bolduc, J.A., J.A. Collins, and R.F. Loeser. 2018. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radical Biology and Medicine 132: 73–82. https://doi.org/10.1016/j.freeradbiomed.2018.08.038.

    Article  CAS  PubMed  Google Scholar 

  57. Lippross, S., R. Beckmann, N. Streubesand, F. Ayub, M. Tohidnezhad, G. Campbell, Y.W. Kan, F. Horst, T.T. Sönmez, D. Varoga, P. Lichte, H. Jahr, T. Pufe, and C.J. Wruck. 2014. Nrf2 deficiency impairs fracture healing in mice. Calcified Tissue International 95 (4): 349–361. https://doi.org/10.1007/s00223-014-9900-5.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, J., Y. Tang, Q. Wu, Y.C. Ji, Z.F. Feng, and F.W. Kang. 2019. HIF-1α facilitates osteocyte-mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro. Journal of Cellular Physiology 234 (11): 21182–21192. https://doi.org/10.1002/jcp.28721.

    Article  CAS  PubMed  Google Scholar 

  59. Legendre, F., J. Dudhia, J.P. Pujol, and P. Bogdanowicz. 2003. JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of Type II Collagen, Aggrecan core, and link protein transcription in articular chondrocytes. Journal of Biological Chemistry 278 (5): 2903–2912. https://doi.org/10.1074/jbc.M110773200.

    Article  CAS  PubMed  Google Scholar 

  60. Chen, L.L., H.J. Zhang, J. Chao, and J.F. Liu. 2017. Essential oil of Artemisia argyi suppresses inflammatory responses by inhibiting JAK/STATs activation. Journal of Ethnopharmacology 204: 107–117. https://doi.org/10.1016/j.jep.2017.04.017.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, L.B., Z.T. Man, W. Li, W. Zhang, X.Q. Wang, and S. Sun. 2017. Calcitonin protects chondrocytes from lipopolysaccharide-induced apoptosis and inflammatory response through MAPK/Wnt/NF-κB pathways. Molecular Immunology 87: 249–257. https://doi.org/10.1016/j.molimm.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Y., T. Pizzute, and M. Pei. 2014. A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell and Tissue Research 358 (3): 633–649. https://doi.org/10.1007/s00441-014-2010-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lu, W., Z. Ding, F. Liu, W. Shan, C. Cheng, J. Xu, W. He, W. Huang, J. Ma, and Z. Yin. 2019. Dopamine delays articular cartilage degradation in osteoarthritis by negative regulation of the NF-κB and JAK2/STAT3 signaling pathways. Biomedicine & Pharmacotherapy 119: 109419. https://doi.org/10.1016/j.biopha.2019.109419.

    Article  CAS  Google Scholar 

  64. Zou, L.X., L. Yu, X.M. Zhao, J. Liu, H.G. Lu, G.W. Liu, and W.C. Guo. 2020. MiR-375 mediates chondrocyte metabolism and oxidative stress in osteoarthritis mouse models through the JAK2/STAT3 signaling pathway. Cells, Tissues, Organs 208 (1–2): 13–24. https://doi.org/10.1159/000504959.

    Article  CAS  Google Scholar 

  65. Winston, L.A., and T. Hunter. 1995. JAK2, Ras, and Raf are required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. Journal of Biological Chemistry 270 (52): 30837–30840. https://doi.org/10.1074/jbc.270.52.30837.

    Article  CAS  PubMed  Google Scholar 

  66. Abe, J.I., and B.C. Berk. 1999. Fyn and JAK2 mediate Ras activation by reactive oxygen species. Journal of Biological Chemistry 274 (30): 21003–21010. https://doi.org/10.1074/jbc.274.30.21003.

    Article  CAS  PubMed  Google Scholar 

  67. Stivala, S., T. Codilupi, S. Brkic, A. Baerenwaldt, N. Ghosh, H. Hao-Shen, S. Dirnhofer, M.S. Dettmer, C. Simillion, B.A. Kaufmann, S. Chiu, M. Keller, M. Kleppe, M. Hilpert, A.S. Buser, J.R. Passweg, T. Radimerski, R.C. Skoda, RL. Levine, and S.C. Meyer. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. Journal of Clinical Investigation 129 (4): 1596–1611. https://doi.org/10.1172/JCI98785.

  68. Gao, S., J. Hu, X. Wu, and Z. Liang. 2018. PMA treated THP-1-derived-IL-6 promotes EMT of SW48 through STAT3/ERK-dependent activation of Wnt/β-catenin signaling pathway. B Biomedicine & Pharmacotherapy 108: 618–624. https://doi.org/10.1016/j.biopha.2018.09.067.

    Article  CAS  Google Scholar 

  69. Ni, Y., H. Zhang, J. Zhang, Z. Li, and Z. Li. 2020. Inhibition of JAK2 by AG490 promotes TNF-α-induced apoptosis by inhibiting autophagy in MC3T3-E1 cells. Die Pharmazie 75 (6): 255–260. https://doi.org/10.1691/ph.2020.0375.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We sincerely thank Professor Jinghong Chen (Xi’an Jiaotong University, Xi’an) for providing C28/I2 cells.

Funding

This work was supported by the Natural Science Foundation of China (No. 81872971) and Key R&D Program of Science and Technology Bureau of Chengdu (No. 2019-YFYF-00002-SN).

Author information

Authors and Affiliations

Authors

Contributions

Yue Shen participated in writing-original draft, methodology, and data analysis; Li Teng participated in acquisition, analysis, and interpretation of data; Yuhan Qu participated in conceptualization and data analysis; Yuehui Huang participated in methodology; Yi Peng took charge of data analysis; Min Tang participated in conceptualization. Qiang Fu provided concept and design, administrative, technical, and material support. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiang Fu.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by the Institutional Animal Care and Use Committee (IACUC) of Chengdu University (Permit Number: 2018–35).

Consent for Publication

All authors have approved the manuscript and agree with submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3281 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Teng, L., Qu, Y. et al. Hederagenin Suppresses Inflammation and Cartilage Degradation to Ameliorate the Progression of Osteoarthritis: An In vivo and In vitro Study. Inflammation 46, 655–678 (2023). https://doi.org/10.1007/s10753-022-01763-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01763-5

KEY WORDS

Navigation