Skip to main content
Log in

Radial Extracorporeal Shock Wave Therapy Combined with Resveratrol Derivative Alleviates Chronic Nonbacterial Prostatitis in Rats

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Resveratrol (Res) is a non-flavonoid polyphenol compound with biological pleiotropic properties, but low bioavailability limits its application value. Here, we synthesized a new Res derivative ((E)-5-(dimethylamino)-2-(4-methoxystyryl)phenol), and attempted to determine the function of Res derivative combined with radial extracorporeal shock wave therapy (rESWT) in chronic nonbacterial prostatitis (CNP). CNP model rats were constructed by subcutaneous administration of prostatein suspension (15 mg/ml), followed by rESWT treatment alone or in associated with Res or Res derivatives. In this study, inflammatory cell infiltration and tissue fibrosis in the prostate tissues of CNP rats were significantly deteriorated, which was effectively abolished by rESWT treatment alone or in combination with Res or Res derivative. The expression of interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), nerve growth factor (NGF), and nuclear factor kappa-B (NF-κB) were increased, while silent information regulator 1 (SIRT1) expression was suppressed in the prostate tissues of CNP rats, which were then rescued by rESWT treatment alone or in associated with Res or Res derivative. Importantly, compared with Res derivative treatment alone or rESWT combined with Res treatment, combination treatment with rESWT and Res derivative was more effective in alleviating inflammation and fibrosis, in reducing IL-1β, TNF-α, NGF, and SIRT1 expression, and in facilitating SIRT1 expression. Overall, rESWT combined with Res derivative treatment improved CNP in rat by reducing inflammation and fibrosis, which attributed to regulate the expression of SIRT1 and NF-κB. Thus, this work provides a theoretical basis for rESWT combined with Res derivative in the clinical treatment of CNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data used or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Ramakrishnan, K., and R. Salinas. 2010. Prostatitis: Acute and chronic. Primary Care 37: 547–63. https://doi.org/10.1016/j.pop.2010.04.007 (viii-ix).

    Article  PubMed  Google Scholar 

  2. Polackwich, A., and D. Shoskes. 2016. Chronic prostatitis/chronic pelvic pain syndrome: A review of evaluation and therapy. Prostate Cancer and Prostatic Diseases 19: 132–138. https://doi.org/10.1038/pcan.2016.8.

    Article  CAS  PubMed  Google Scholar 

  3. Murphy, S., A. Schaeffer, and P. Thumbikat. 2014. Immune mediators of chronic pelvic pain syndrome. Nature Reviews. Urology 11: 259–269. https://doi.org/10.1038/nrurol.2014.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lien, C., C. Chung, C. Lin, and C. Chang. 2020. Increased risk of prostatitis in male patients with depression. The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry 21: 111–118. https://doi.org/10.1080/15622975.2018.1533994.

    Article  PubMed  Google Scholar 

  5. Kataria, R., and A. Khatkar. 2019. Resveratrol in various pockets: A review. Current Topics in Medicinal Chemistry 19: 116–122. https://doi.org/10.2174/1568026619666190301173958.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, N., Y. Tian, H. Wu, Y. Cao, R. Li, and K. Zou. 2022. Protective effect of resveratrol on immortalized duck intestinal epithelial cells exposed to H(2)O(2). Molecules 27: 3542. https://doi.org/10.3390/molecules27113542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fiod Riccio, B., B. Fonseca-Santos, P. Colerato Ferrari, and M. Chorilli. 2020. Transcharacteristics, biological properties and analytical methods of -resveratrol: A review. Critical Reviews in Analytical Chemistry 50: 339–358. https://doi.org/10.1080/10408347.2019.1637242.

    Article  CAS  PubMed  Google Scholar 

  8. Singh, A., R. Singh, S. Verma, V. Rai, C. Kaschula, P. Maiti, and S. Gupta. 2019. Health benefits of resveratrol: Evidence from clinical studies. Medicinal Research Reviews 39: 1851–1891. https://doi.org/10.1002/med.21565.

    Article  CAS  PubMed  Google Scholar 

  9. Breuss, J., A. Atanasov, and P. Uhrin. 2019. Resveratrol and its effects on the vascular system. International Journal of Molecular Sciences 20: 1523. https://doi.org/10.3390/ijms20071523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yousef, M., I. Vlachogiannis, and E. Tsiani. 2017. Effects of resveratrol against lung cancer: In vitro and in vivo studies. Nutrients 9: 1231. https://doi.org/10.3390/nu9111231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, Q., Y. He, X. Zhong, W. Xie, and J. Zhou. 2019. Resveratrol ameliorates gouty inflammation via upregulation of sirtuin 1 to promote autophagy in gout patients. Inflammopharmacology 27: 47–56. https://doi.org/10.1007/s10787-018-00555-4.

    Article  CAS  PubMed  Google Scholar 

  12. Ma, C., Y. Wang, L. Dong, M. Li, and W. Cai. 2015. Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways. Acta Biochimica et Biophysica Sinica 47: 207–213. https://doi.org/10.1093/abbs/gmu135.

    Article  CAS  PubMed  Google Scholar 

  13. Vicari, E., A. Arancio, V. Catania, B. Vicari, G. Sidoti, R. Castiglione, and M. Malaguarnera. 2020. Resveratrol reduces inflammation-related prostate fibrosis. International Journal of Medical Sciences 17: 1864–1870. https://doi.org/10.7150/ijms.44443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, Y., J. Jiang, Y. He, W. Wang, C. Shen, and B. Yang. 2017. Resveratrol improves urinary dysfunction in rats with chronic prostatitis and suppresses the activity of the stem cell factor/c-Kit signaling pathway. Molecular Medicine Reports 16: 1395–1400. https://doi.org/10.3892/mmr.2017.6721.

    Article  CAS  PubMed  Google Scholar 

  15. Walle, T. 2011. Bioavailability of resveratrol. Annals of the New York Academy of Sciences 1215: 9–15. https://doi.org/10.1111/j.1749-6632.2010.05842.x.

    Article  CAS  PubMed  Google Scholar 

  16. Milton-Laskíbar, I., S. Gómez-Zorita, N. Arias, N. Romo-Miguel, M. González, A. Fernández-Quintela, and M. Portillo. 2020. Effects of resveratrol and its derivative pterostilbene on brown adipose tissue thermogenic activation and on white adipose tissue browning process. Journal of Physiology and Biochemistry 76: 269–278. https://doi.org/10.1007/s13105-020-00735-3.

    Article  CAS  PubMed  Google Scholar 

  17. Ben Khalifa, B., S. Naouar, W. Gazzah, B. Salem, and R. El Kamel. 2016. Predictive factors of extracorporeal shock wave lithotripsy success for urinary stones. La Tunisie Medicale 94: 397–400.

    PubMed  Google Scholar 

  18. Guo, P., F. Gao, T. Zhao, W. Sun, B. Wang, and Z. Li. 2017. Positive effects of extracorporeal shock wave therapy on spasticity in poststroke patients: A meta-analysis. Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association 26: 2470–2476. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.019.

    Article  PubMed  Google Scholar 

  19. Yuan, P., D. Ma, Y. Zhang, X. Gao, Z. Liu, R. Li, T. Wang, S. Wang, J. Liu, and X. Liu. 2019. Efficacy of low-intensity extracorporeal shock wave therapy for the treatment of chronic prostatitis/chronic pelvic pain syndrome: A systematic review and meta-analysis. Neurourology and Urodynamics 38: 1457–1466. https://doi.org/10.1002/nau.24017.

    Article  PubMed  Google Scholar 

  20. Bernoulli, J., E. Yatkin, Y. Konkol, E.M. Talvitie, R. Santti, and T. Streng. 2008. Prostatic inflammation and obstructive voiding in the adult Noble rat: Impact of the testosterone to estradiol ratio in serum. Prostate 68: 1296–1306. https://doi.org/10.1002/pros.20791.

    Article  CAS  PubMed  Google Scholar 

  21. Hou, C., L. Lu, Z. Liu, Y. Lian, and J. Xiao. 2021. Resveratrol reduces drug resistance of SCLC cells by suppressing the inflammatory microenvironment and the STAT3/VEGF pathway. FEBS Open Bio 11: 2256–2265. https://doi.org/10.1002/2211-5463.13230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, Y., X. Yu, P. Zhao, J. Huang, and X. Huang. 2022. Effects of resveratrol on tight junction proteins and the Notch1 pathway in an HT-29 cell model of inflammation induced by lipopolysaccharide. Inflammation. https://doi.org/10.1007/s10753-022-01704-2.

    Article  PubMed  Google Scholar 

  23. Zeng, H., Y. He, Y. Yu, J. Zhang, X. Zeng, F. Gong, Q. Liu, and B. Yang. 2018. Resveratrol improves prostate fibrosis during progression of urinary dysfunction in chronic prostatitis by mast cell suppression. Molecular Medicine Reports 17: 918–924. https://doi.org/10.3892/mmr.2017.7960.

    Article  CAS  PubMed  Google Scholar 

  24. He, Y., H. Zeng, Y. Yu, J. Zhang, X. Duan, X. Zeng, F. Gong, Q. Liu, and B. Yang. 2017. Resveratrol improves prostate fibrosis during progression of urinary dysfunction in chronic prostatitis. Environmental Toxicology and Pharmacology 54: 120–124. https://doi.org/10.1016/j.etap.2017.06.025.

    Article  CAS  PubMed  Google Scholar 

  25. Qian, X., Z. Gu, W,  Guan, J. Qi. 2021. Resveratrol could attenuate prostatic inflammation in rats with oestradiol-induced chronic prostatitis. 53:e14004. https://doi.org/10.1111/and.14004.

  26. Igarashi, T., P. Tyagi, and S. Mizoguchi. 2021. Therapeutic effects of nerve growth factor-targeting therapy on bladder overactivity in rats with prostatic inflammation. Prostate 81: 1303–1309. https://doi.org/10.1002/pros.24227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jurczyk, M., and J. Kasperczyk. 2022. Nanoparticles loaded with docetaxel and resveratrol as an advanced tool for cancer therapy. Biomedicines 10: 1187. https://doi.org/10.3390/biomedicines10051187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weiskirchen, S., and R. Weiskirchen. 2016. Resveratrol: how much wine do you have to drink to stay healthy? Advances in Nutrition (Bethesda, Md.) 7: 706–18. https://doi.org/10.3945/an.115.011627.

    Article  CAS  PubMed  Google Scholar 

  29. Smoliga, J., and O. Blanchard. 2014. Enhancing the delivery of resveratrol in humans: If low bioavailability is the problem, what is the solution? Molecules (Basel, Switzerland) 19: 17154–17172. https://doi.org/10.3390/molecules191117154.

    Article  CAS  PubMed  Google Scholar 

  30. Delmas, D., V. Aires, E. Limagne, P. Dutartre, F. Mazué, F. Ghiringhelli, and N. Latruffe. 2011. Transport, stability, and biological activity of resveratrol. Annals of the New York Academy of Sciences 1215: 48–59. https://doi.org/10.1111/j.1749-6632.2010.05871.x.

    Article  CAS  PubMed  Google Scholar 

  31. Liao, C., G. Xie, J. Tsauo, H. Chen, and T. Liou. 2018. Efficacy of extracorporeal shock wave therapy for knee tendinopathies and other soft tissue disorders: A meta-analysis of randomized controlled trials. BMC Musculoskeletal Disorders 19: 278. https://doi.org/10.1186/s12891-018-2204-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shen, P., M. Jiang, J. Yang, X. Li, Y. Li, W. Wei, Y. Dai, H. Zeng, and J. Wang. 2011. Use of ureteral stent in extracorporeal shock wave lithotripsy for upper urinary calculi: A systematic review and meta-analysis. The Journal of Urology 186: 1328–1335. https://doi.org/10.1016/j.juro.2011.05.073.

    Article  PubMed  Google Scholar 

  33. Feng, B., Z. Dong, Y. Wang, G. Yan, E. Yang, H. Cheng, C. Liang, Z. Hao, X. Zhang, Z. Song, Z. Jiang, M. Chen, Z. Yue, and Z. Wang. 2021. Li-ESWT treatment reduces inflammation, oxidative stress, and pain via the PI3K/AKT/FOXO1 pathway in autoimmune prostatitis rat models. Andrology 9: 1593–1602. https://doi.org/10.1111/andr.13027.

    Article  CAS  PubMed  Google Scholar 

  34. Jeon, S., G. Zhu, E. Kwon, K. Lee, H. Cho, U. Ha, S. Hong, J. Lee, W. Bae, and S. Kim. 2019. Extracorporeal shock wave therapy decreases COX-2 by inhibiting TLR4-NFκB pathway in a prostatitis rat model. The Prostate 79: 1498–1504. https://doi.org/10.1002/pros.23880.

    Article  CAS  PubMed  Google Scholar 

  35. Birowo, P., E. Rangganata, N. Rasyid, and W. Atmoko. 2020. Efficacy and safety of extracorporeal shockwave therapy for the treatment of chronic non-bacterial prostatitis: A systematic review and meta-analysis. PLoS ONE 15: e0244295. https://doi.org/10.1371/journal.pone.0244295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, H.J., P. Tyagi, and Y.M. Chen. 2019. Low energy shock wave therapy inhibits inflammatory molecules and suppresses prostatic pain and hypersensitivity in a capsaicin induced prostatitis model in rats. International Journal of Molecular Science 20: 4777. https://doi.org/10.3390/ijms20194777.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhengyao Song designed and performed the research, and wrote the manuscript; Chen Jin and Zichen Bian had done the experiment and analyzed data; Chaozhao Liang supervised the entire study and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chaozhao Liang.

Ethics declarations

Ethics Approval and Consent to Participate

All programs were carried out under the authorization of the Ethics Committee of the First Affiliated Hospital of Anhui Medical University.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1087 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Jin, C., Bian, Z. et al. Radial Extracorporeal Shock Wave Therapy Combined with Resveratrol Derivative Alleviates Chronic Nonbacterial Prostatitis in Rats. Inflammation 46, 584–597 (2023). https://doi.org/10.1007/s10753-022-01757-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01757-3

KEY WORDS

Navigation