Skip to main content

Advertisement

Log in

Treatment with 1,25-Dihydroxyvitamin D3 Delays Choroid Plexus Infiltration and BCSFB Injury in MRL/lpr Mice Coinciding with Activation of the PPARγ/NF-κB/TNF-α Pathway and Suppression of TGF-β/Smad Signaling

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious complication of systemic lupus erythematosus (SLE) involving the nervous system with high morbidity and mortality. A key hypothesis in NPSLE is that a disrupted barrier allows autoantibodies and immune components of peripheral blood to penetrate into the central nervous system (CNS), resulting in inflammation and damage. The blood cerebrospinal fluid barrier (BCSFB), which consists of the choroid plexus and the hypothalamic tanycytes, has long been regarded as an immunological sanctuary site. 1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the active form of vitamin D, which plays multiple roles in inflammation and immunoregulation. In this study, we investigated the possible protective effects of 1,25-dihydroxyvitamin D3 against BCSFB dysfunction in NPSLE in MRL/lpr mice and explored the mechanism by which 1,25-dihydroxyvitamin D3 inhibits the progression of NPSLE. In this study, we found that supplementation with 1,25-dihydroxyvitamin D3 markedly improved serological and immunological indices, delayed inflammatory infiltration, delayed neuronal deformation, and upregulated the expression of brain-derived neurotrophic factor (BDNF) proteins in the brain. Furthermore, 1,25-dihydroxyvitamin D3 downregulated proinflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α) by activating peroxisome proliferator-activated receptor γ (PPARγ), and it reduced the expression of the TGF-β/Smad signaling pathway. Our findings demonstrate that 1,25-dihydroxyvitamin D3 delayed cell infiltration into the choroid plexus and decreased markers suggestive of cognitive decline in MRL/lpr mice, and the mechanism may be related to protection against BCSFB disruption through activation of the anti-inflammatory PPARγ/NF-κB/TNF-α pathway as well as upregulation of BDNF and inhibition of the TGF-β/Smad signaling pathway. These findings provide a novel direction for the study of NPSLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

DATA AVAILABILITY

The datasets during the current study are available from the corresponding author on reasonable request.

References

  1. Kiriakidou, M., and C.L. Ching. 2020. Systemic lupus erythematosus. Annals of Internal Medicine 172(11):ITC81-ITC96.

  2. Hanly, J.G., E. Kozora, S.D. Beyea, et al. 2019. Review: Nervous system disease in systemic lupus erythematosus: Current status and future directions. Arthritis & Rhematology 71 (1): 33–42.

    Article  Google Scholar 

  3. Tanaka, Y. 2019. Neuropsychiatric systemic lupus erythematosus. Brain and Nerve 71 (5): 445–458.

    CAS  PubMed  Google Scholar 

  4. Moore, E., M.W. Huang, and C. Putterman. 2020. Advances in the diagnosis, pathogenesis and treatment of neuropsychiatric systemic lupus erythematosus. Current Opinion in Rheumatology 32 (2): 152–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwartz, N., A.D. Stock, and C. Putterman. 2019. Neuropsychiatric lupus: New mechanistic insights and future treatment directions. Nature Reviews Rheumatology 15 (3): 137–152.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee, S.M., A.H. Carlson, M. Onal, et al. 2019. A control region near the fibroblast growth factor 23 gene mediates response to phosphate, 1,25(OH)2D3, and LPS in vivo. Endocrinology 160 (12): 2877–2891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park, C.Y., T.Y. Kim, J.S. Yoo, et al. 2020. Effects of 1,25-dihydroxyvitamin D3 on the inflammatory responses of stromal vascular cells and adipocytes from lean and obese mice. Nutrients 12 (2): 364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franco, A.S., T.Q. Freitas, W.M. Bernardo, et al. 2017. Vitamin D supplementation and disease activity in patients with immune-mediated rheumatic diseases: A systematic review and meta-analysis. Medicine (Baltimore) 96 (23): e7024.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X., and Y. Xia. 2019. Anti-double stranded DNA antibodies: Origin, pathogenicity, and targeted therapies. Frontiers in Immunology 10: 1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petri, M.A., J. Conklin, T. O’Malley, et al. 2019. Platelet-bound C4d, low C3 and lupus anticoagulant associate with thrombosis in SLE. Lupus Sci Med 6 (1): e000318.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dunn, J.F., and A.M. Isaacs. 2021. The impact of hypoxia on blood-brain, blood-CSF, and CSF-brain barriers. Journal of Applied Physiology (1985) 131(3):977–985.

  12. Gelb, S., A.D. Stock, S. Anzi, et al. 2018. Mechanisms of neuropsychiatric lupus: The relative roles of the blood-cerebrospinal fluid barrier versus blood-brain barrier. Journal of Autoimmunity 91: 34–44.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Villapol, S. 2018. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cellular and Molecular Neurobiology 38 (1): 121–132.

    Article  CAS  PubMed  Google Scholar 

  14. Xie, Z., L. Huang, B. Enkhjargal, et al. 2018. Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARγ/NFκB signaling pathway after subarachnoid hemorrhage in rats. Brain, Behavior, and Immunity 69: 190–202.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, T., Y. Wang, Y. Guo, et al. 2018. 1, 25–D3 protects from cerebral ischemia by maintaining BBB permeability via PPAR-γ activation. Frontiers in Cellular Neuroscience 12: 480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Palasz, E., A. Wysocka, A. Gasiorowska, et al. 2020. BDNF as a promising therapeutic agent in Parkinson’s disease. International Journal of Molecular Sciences 21 (3): 1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vander Ark, A., J. Cao, and X. Li. 2018. TGF-β receptors: In and beyond TGF-β signaling. Cellular Signalling 52: 112–120.

    Article  CAS  PubMed  Google Scholar 

  18. Qu, S., L. Yang, and Z. Liu. 2020. MicroRNA-194 reduces inflammatory response and human dermal microvascular endothelial cells permeability through suppression of TGF-β/SMAD pathway by inhibiting THBS1 in chronic idiopathic urticaria. Journal of Cellular Biochemistry 121 (1): 111–124.

    Article  CAS  PubMed  Google Scholar 

  19. Hiew, L.F., C.H. Poon, H.Z. You, et al. 2021. TGF-β/Smad signalling in neurogenesis: Implications for neuropsychiatric diseases. Cell 10 (6): 1382.

    Article  CAS  Google Scholar 

  20. Andrews, B.S., R.A. Eisenberg, and A.N. Theofilopoulos. 1978. Spontaneous murine lupus-like syndromes: Clinical and immunopathological manifestations in several strains. Journal of Experimental Medicine 148 (5): 1198–1215.

    Article  CAS  PubMed  Google Scholar 

  21. Li, Y., A.R. Eskelund, H. Zhou, et al. 2015. Behavioral deficits are accompanied by immunological and neurochemical changes in a mouse model for neuropsychiatric lupus (NP-SLE). International Journal of Molecular Sciences 16 (7): 15150–15171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szechtman, H., and Saki´c B, Denburg JA. 1997. Behaviour of MRL mice: An animal model of disturbed behaviour in systemic autoimmune disease. Lupus 6: 223–229.

    Article  CAS  PubMed  Google Scholar 

  23. Stielke, S., G. Keilhoff, E. Kirches, et al. 2012. Adhesion molecule expression precedes brain damages of lupus-prone mice and correlates with kidney pathology. Neuroimmunology 252: 24–32.

    Article  CAS  Google Scholar 

  24. Nystad, A.E., R.R. Lereim, S. Wergeland, et al. 2020. Fingolimod downregulates brain sphingosine-1-phosphate receptor 1 levels but does not promote remyelination or neuroprotection in the cuprizone model. Neuroimmunology 339: 577091

  25. Mike, E.V., H.M. Makinde, M. Gulinello, et al. 2018. Lipocalin-2 is a pathogenic determinant and biomarker of neuropsychiatric lupus. Autoimmun 96: 59–73.

    Article  Google Scholar 

  26. Chen, E.Y., C.M. Tan, Y. Kou, et al. 2013. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14 (1): 128.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kuleshov, M.V., M.R. Jones, A.D. Rouillard, et al. 2016. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research 44 (W1): W90–W97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, X., T.W. Laudeman, P.J. Rushton, et al. 2007. CGKB: An annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinformatics 8:129.

  29. Xie, Z., A. Bailey, M.V. Kuleshov, et al. 2021. Gene set knowledge discovery with Enrichr. Curr Protoc 1 (3): e90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, J., Y. Liu, X. Cheng, et al. 2017. The effects of LW-AFC on the hippocampal transcriptome in senescence-accelerated mouse prone 8 strain, a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease 57 (1): 227–240.

    Article  CAS  PubMed  Google Scholar 

  31. Qiao, X., H. Wang, L. Lu, et al. 2021. Hippocampal microglia CD40 mediates NPSLE cognitive dysfunction in mice. Journal of Neuroimmunology 357: 577620.

    Article  CAS  PubMed  Google Scholar 

  32. Sato, S., J. Temmoku, Y. Fujita, et al. 2020. Autoantibodies associated with neuropsychiatric systemic lupus erythematosus: The quest for symptom-specific biomarkers. Fukushima Journal of Medical Sciences 66 (1): 1–9.

    Article  CAS  Google Scholar 

  33. Wen, J., J. Doerner, K. Weidenheim, et al. 2015. TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice. Journal of Autoimmunity 60: 40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramsey-Goldman, R., J. Li, T. Dervieux, et al. 2017. Cell-bound complement activation products in SLE. Lupus Science and Medicine 4(1): e000236

  35. Fanouriakis, A., D.T. Boumpas, and G.K. Bertsias. 2013. Pathogenesis and treatment of CNS lupus. Current Opinion in Rheumatology 25 (5): 577–583.

    Article  CAS  PubMed  Google Scholar 

  36. Lu, L., H. Wang, X. Liu, et al. 2021. Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. Neuroinflammation 18 (1): 229.

    Article  CAS  Google Scholar 

  37. Duarte-Delgado, N.P., G. Vásquez, and B.L. Ortiz-Reyes. 2019. Blood-brain barrier disruption and neuroinflammation as pathophysiological mechanisms of the diffuse manifestations of neuropsychiatric systemic lupus erythematosus. Autoimmunity Reviews 18 (4): 426–432.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, J., Y. Liu, X. Cheng, et al. 2017. The effects of LW-AFC on the hippocampal transcriptome in senescence-accelerated mouse prone 8 strain, a mouse model of Alzheimer’s disease. Alzheimers Dis 57: 227–240.

    Article  CAS  Google Scholar 

  39. Bărbulescu, A.L., R.E. Sandu, A.F. Vreju, et al. 2019. Neuroinflammation in systemic lupus erythematosus - A review. Romanian Journal of Morphology and Embryology 60 (3): 781–786.

    PubMed  Google Scholar 

  40. Faust, T.W., E.H. Chang, C. Kowal, et al. 2010. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proceedings of the National Academy of Sciences USA 107 (43): 18569–18574.

    Article  CAS  Google Scholar 

  41. DeGiorgio, L.A., K.N. Konstantinov, S.C. Lee, et al. 2001. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nature Medicine 7 (11): 1189–1193.

    Article  CAS  PubMed  Google Scholar 

  42. Kowal, C., L.A. Degiorgio, J.Y. Lee, et al. 2006. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proceedings of the National Academy of Sciences USA 103 (52): 19854–19859.

    Article  CAS  Google Scholar 

  43. Stock, A.D., S. Gelb, O. Pasternak, et al. 2017. The blood brain barrier and neuropsychiatric lupus: New perspectives in light of advances in understanding the neuroimmune interface. Autoimmunity Reviews 16 (6): 612–619.

    Article  CAS  PubMed  Google Scholar 

  44. Erickson, M.A., and W.A. Banks. 2019. Age-associated changes in the immune system and blood-brain barrier functions. International Journal of Molecular Sciences 20 (7): 1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, L., and X. Liu. 2019. Contributions of drug transporters to blood-brain barriers. Advances in Experimental Medicine and Biology 1141: 407–466.

    Article  CAS  PubMed  Google Scholar 

  46. Erb, U., C. Schwerk, H. Schroten, et al. 2020. Review of functional in vitro models of the blood-cerebrospinal fluid barrier in leukaemia research. Journal of Neuroscience Methods 329: 108478.

    Article  PubMed  Google Scholar 

  47. Solár, P., A. Zamani, L. Kubíčková, et al. 2020. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 17 (1): 35.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zanotto, C., F. Simão, M.S. Gasparin, et al. 2017. Exendin-4 reverses biochemical and functional alterations in the blood-brain and blood-CSF barriers in diabetic rats. Molecular Neurobiology 54 (3): 2154–2166.

    Article  CAS  PubMed  Google Scholar 

  49. Abdelrahman, M., A. Sivarajah, and C. Thiemermann. 2005. Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovascular Research 65: 772–781.

    Article  CAS  PubMed  Google Scholar 

  50. Akiyama, T.E., P.T. Meinke, and J.P. Berger. 2005. PPAR ligands: Potential therapies for metabolic syndrome. Current Diabetes Reports 5: 45–52.

    Article  CAS  PubMed  Google Scholar 

  51. Bernardo, A., and L. Minghetti. 2006. PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Current Pharmaceutical Design 12: 93–109.

    Article  CAS  PubMed  Google Scholar 

  52. He, X., W. Liu, M. Shi, et al. 2017. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Research in Veterinary Science 112: 7–12.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, X., M. Zhou, Y. Guo, et al. 2015. 1,25-Dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. BioMed Research International 2015: 157834.

    PubMed  PubMed Central  Google Scholar 

  54. Kowiański, P., G. Lietzau, E. Czuba, et al. 2018. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology 38 (3): 579–593.

    Article  PubMed  Google Scholar 

  55. Hiew, L.F., C.H. Poon, H.Z. You, et al. 2021.TGF-β/Smad signalling in neurogenesis: implications for neuropsychiatric diseases. Cells 10(6):1382.

  56. Garcia-Bueno, B., J.R. Caso, and J.C. Leza. 2008. Stress as a neuroinflammatory condition in brain: Damaging and protective mechanisms. Neuroscience and Biobehavioral Reviews 32: 1136–1151.

    Article  CAS  PubMed  Google Scholar 

  57. Sotiropoulos, M.G., and T. Chitnis. 2020. Opposing and potentially antagonistic effects of BMP and TGF-β in multiple sclerosis: The “Yin and Yang” of neuro-immune Signaling. Journal of Neuroimmunology 347: 577358.

    Article  CAS  PubMed  Google Scholar 

  58. Vogel, T., S. Ahrens, N. Büttner, et al. 2010. Transforming growth factor beta promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: Identification of Nedd9 as an essential signaling component. Cerebral Cortex 20 (3): 661–671.

    Article  PubMed  Google Scholar 

  59. Wachs, F.P., B. Winner, S. Couillard-Despres, et al. 2006. Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. Journal of Neuropathology & Experimental Neurology 65: 358–370.

    Article  CAS  Google Scholar 

  60. Chao, C.C., S. Hu, W.H. Frey, et al. 1994. Transforming growth factor beta in Alzheimer’s disease. Clinical and Diagnostic Laboratory Immunology 1: 109–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vawter, M.P., O. Dillon-Carter, W.W. Tourtellotte, et al. 1996. TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Experimental Neurology 142: 313–322.

    Article  CAS  PubMed  Google Scholar 

  62. Tzavlaki, K., and A. Moustakas. 2020. TGF-β signaling. Biomolecule 10 (3): 487.

    Article  CAS  Google Scholar 

  63. El-Sawaf, E.S., S. Saleh, D.M. Abdallah, et al. 2021. Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. Life Sciences 279: 119697.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We thank Dr. Yanqiang Wang for his instructive advice and useful suggestions on my thesis, and providing to help experiment design and completion in the study.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81870943).

Author information

Authors and Affiliations

Authors

Contributions

This article is mainly written by XWL and SX. JL and YZ wrote part of the manuscript and proofread the manuscript. RH helped us collect literature information and draw pictures. XLL and YW reviewed the manuscript and proposed final revisions. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Xiangling Li or Yanqiang Wang.

Ethics declarations

Ethics Approval and Consent to Participate

All experiments were performed according to the institutional ethical guidelines on animal care and approved by the Institute Animal Care and Use Committee at the Weifang Medical University, Shandong, China.

Consent for Publication

The consent of all coauthors was collected before submission. A preprint has previously been published.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2131 KB)

Supplementary file2 (PDF 11803 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xu, S., Liu, J. et al. Treatment with 1,25-Dihydroxyvitamin D3 Delays Choroid Plexus Infiltration and BCSFB Injury in MRL/lpr Mice Coinciding with Activation of the PPARγ/NF-κB/TNF-α Pathway and Suppression of TGF-β/Smad Signaling. Inflammation 46, 556–572 (2023). https://doi.org/10.1007/s10753-022-01755-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01755-5

KEY WORDS

Navigation