Skip to main content

Advertisement

Log in

Macrophage-Derived TGF-β and VEGF Promote the Progression of Trauma-Induced Heterotopic Ossification

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Heterotopic ossification (HO) is a pathological bone formation process caused by musculoskeletal trauma. HO is characterized by aberrant endochondral ossification and angiogenesis. Our previous studies have indicated that macrophage inflammation is involved in traumatic HO formation. In this study, we found that macrophage infiltration and TGF-β signaling activation are presented in human HO. Depletion of macrophages effectively suppressed traumatic HO formation in a HO mice model, and macrophage depletion significantly inhibited the activation of TGF-β/Smad2/3 signaling. In addition, the TGF-β blockade created by a neutralizing antibody impeded ectopic bone formation in vivo. Notably, endochondral ossification and angiogenesis are attenuated following macrophage depletion or TGF-β inhibition. Furthermore, our observations on macrophage polarization revealed that M2 macrophages, rather than M1 macrophages, play a critical role in supporting HO development by enhancing the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Our findings on ectopic bone formation in HO patients and the mice model indicate that M2 macrophages are an important contributor for HO development, and that inhibition of M2 polarization or TGF-β activity may be a potential method of therapy for traumatic HO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

DATA AVAILABILITY

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kaplan, F.S., D.L. Glaser, N. Hebela, and E.M. Shore. 2004. Heterotopic ossification. Journal of American Academy of Orthopaedic Surgeons 12 (2): 116–125. https://doi.org/10.5435/00124635-200403000-00007.

    Article  Google Scholar 

  2. Ranganathan, K., S. Loder, S. Agarwal, V.W. Wong, J. Forsberg, T.A. Davis, S. Wang, A.W. James, and B. Levi. 2015. Heterotopic ossification: Basic-science principles and clinical correlates. Journal of Bone and Joint Surgery. American Volume 97 (13): 1101–1111. https://doi.org/10.2106/JBJS.N.01056.

    Article  PubMed  Google Scholar 

  3. Convente, M.R., H. Wang, R.J. Pignolo, F.S. Kaplan, and E.M. Shore. 2015. The immunological contribution to heterotopic ossification disorders. Current Osteoporosis Reports 13 (2): 116–124. https://doi.org/10.1007/s11914-015-0258-z.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Loder, S.J., S. Agarwal, M.T. Chung, D. Cholok, C. Hwang, N. Visser, K. Vasquez, M. Sorkin, J. Habbouche, H.H. Sung, J. Peterson, D. Fireman, K. Ranganathan, C. Breuler, C. Priest, J. Li, X. Bai, S. Li, P.S. Cederna, and B. Levi. 2018. Characterizing the circulating cell populations in traumatic heterotopic ossification. American Journal of Pathology 188 (11): 2464–2473. https://doi.org/10.1016/j.ajpath.2018.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, J., Z. Sun, G. Luo, S. Wang, H. Cui, Z. Yao, H. Xiong, Y. He, Y. Qian, and C. Fan. 2021. Quercetin attenuates trauma-induced heterotopic ossification by tuning immune cell infiltration and related inflammatory insult. Frontiers in Immunology 12: 649285. https://doi.org/10.3389/fimmu.2021.649285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun, Z., J. Li, G. Luo, W. Liu, Y. He, F. Wang, Y. Qian, and C. Fan. 2021. Pharmacological activation of SIRT1 by metformin prevented trauma-induced heterotopic ossification through inhibiting macrophage mediated inflammation. European Journal of Pharmacology 909: 174386. https://doi.org/10.1016/j.ejphar.2021.174386.

    Article  CAS  PubMed  Google Scholar 

  7. Kraft, C.T., S. Agarwal, K. Ranganathan, V.W. Wong, S. Loder, J. Li, M.J. Delano, and B. Levi. 2016. Trauma-induced heterotopic bone formation and the role of the immune system: A review. Journal of Trauma and Acute Care Surgery 80 (1): 156–165. https://doi.org/10.1097/TA.0000000000000883.

    Article  CAS  PubMed  Google Scholar 

  8. Convente, M.R., S.A. Chakkalakal, E. Yang, R.J. Caron, D. Zhang, T. Kambayashi, F.S. Kaplan, and E.M. Shore. 2018. Depletion of mast cells and macrophages impairs heterotopic ossification in an Acvr 1(R206H) mouse model of fibrodysplasia ossificans progressiva. Journal of Bone and Mineral Research 33 (2): 269–282. https://doi.org/10.1002/jbmr.3304.

    Article  CAS  PubMed  Google Scholar 

  9. Torossian, F., B. Guerton, A. Anginot, K.A. Alexander, C. Desterke, S. Soave, H.W. Tseng, N. Arouche, L. Boutin, I. Kulina, M. Salga, B. Jose, A.R. Pettit, D. Clay, N. Rochet, E. Vlachos, G. Genet, C. Debaud, P. Denormandie, F. Genet, N.A. Sims, S. Banzet, J.P. Levesque, J.J. Lataillade, and M.C. Le Bousse-Kerdiles. 2017. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight 2 (21). https://doi.org/10.1172/jci.insight.96034.

  10. Sorkin, M., A.K. Huber, C. Hwang, and Carson WFt, Menon R, Li J, Vasquez K, Pagani C, Patel N, Li S, Visser ND, Niknafs Y, Loder S, Scola M, Nycz D, Gallagher K, McCauley LK, Xu J, James AW, Agarwal S, Kunkel S, Mishina Y, and Levi B. 2020. Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nature Communications 11 (1): 722. https://doi.org/10.1038/s41467-019-14172-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Epelman, S., K.J. Lavine, and G.J. Randolph. 2014. Origin and functions of tissue macrophages. Immunity 41 (1): 21–35. https://doi.org/10.1016/j.immuni.2014.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murray, P.J. 2017. Macrophage polarization. Annual Review of Physiology 79: 541–566. https://doi.org/10.1146/annurev-physiol-022516-034339.

    Article  CAS  PubMed  Google Scholar 

  13. Okabe, Y., and R. Medzhitov. 2016. Tissue biology perspective on macrophages. Nature Immunology 17 (1): 9–17. https://doi.org/10.1038/ni.3320.

    Article  CAS  PubMed  Google Scholar 

  14. Mantovani, A., S.K. Biswas, M.R. Galdiero, A. Sica, and M. Locati. 2013. Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology 229 (2): 176–185. https://doi.org/10.1002/path.4133.

    Article  CAS  PubMed  Google Scholar 

  15. Crane, J.L., and X. Cao. 2014. Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. The Journal of Clinical Investigation 124 (2): 466–472. https://doi.org/10.1172/JCI70050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kan, C., L. Chen, Y. Hu, N. Ding, H. Lu, Y. Li, J.A. Kessler, and L. Kan. 2018. Conserved signaling pathways underlying heterotopic ossification. Bone 109: 43–48. https://doi.org/10.1016/j.bone.2017.04.014.

    Article  CAS  PubMed  Google Scholar 

  17. Lin, J., Y. Yang, W. Zhou, C. Dai, X. Chen, Y. Xie, S. Han, H. Liu, Y. Hu, C. Tang, V. Bunpetch, D. Zhang, Y. Chen, X. Zou, D. Chen, W. Liu, and H. Ouyang. 2022. Single cell analysis reveals inhibition of angiogenesis attenuates the progression of heterotopic ossification in Mkx(-/-) mice. Bone Research 10 (1): 4. https://doi.org/10.1038/s41413-021-00175-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tu, B., S. Liu, B. Yu, J. Zhu, H. Ruan, T. Tang, and C. Fan. 2016. miR-203 inhibits the traumatic heterotopic ossification by targeting Runx2. Cell Death & Disease 7: e2436. https://doi.org/10.1038/cddis.2016.325.

    Article  CAS  Google Scholar 

  19. Tu, B., B. Yu, W. Wang, J. Li, F. Yuan, J. Zhu, and C. Fan. 2021. Inhibition of IL-17 prevents the progression of traumatic heterotopic ossification. Journal of Cellular and Molecular Medicine 25 (16): 7709–7719. https://doi.org/10.1111/jcmm.16617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Griesmann, H., C. Drexel, N. Milosevic, B. Sipos, J. Rosendahl, T.M. Gress, and P. Michl. 2017. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. Gut 66 (7): 1278–1285. https://doi.org/10.1136/gutjnl-2015-310049.

    Article  CAS  PubMed  Google Scholar 

  21. Dai, J., and A.B. Rabie. 2007. VEGF: An essential mediator of both angiogenesis and endochondral ossification. Journal of Dental Research 86 (10): 937–950. https://doi.org/10.1177/154405910708601006.

    Article  CAS  PubMed  Google Scholar 

  22. Hu, K., and B.R. Olsen. 2016. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91: 30–38. https://doi.org/10.1016/j.bone.2016.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vannella, K.M., and T.A. Wynn. 2017. Mechanisms of organ injury and repair by macrophages. Annual Review of Physiology 79: 593–617. https://doi.org/10.1146/annurev-physiol-022516-034356.

    Article  CAS  PubMed  Google Scholar 

  24. Levesque, J.P., N.A. Sims, A.R. Pettit, K.A. Alexander, H.W. Tseng, F. Torossian, F. Genet, J.J. Lataillade, and M.C. Le Bousse-Kerdiles. 2018. Macrophages driving heterotopic ossification: Convergence of genetically-driven and trauma-driven mechanisms. Journal of Bone and Mineral Research 33 (2): 365–366. https://doi.org/10.1002/jbmr.3346.

    Article  PubMed  Google Scholar 

  25. Genet, F., I. Kulina, C. Vaquette, F. Torossian, S. Millard, A.R. Pettit, N.A. Sims, A. Anginot, B. Guerton, I.G. Winkler, V. Barbier, J.J. Lataillade, M.C. Le Bousse-Kerdiles, D.W. Hutmacher, and J.P. Levesque. 2015. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle. The Journal of Pathology 236 (2): 229–240. https://doi.org/10.1002/path.4519.

    Article  CAS  PubMed  Google Scholar 

  26. Tirone, M., A. Giovenzana, A. Vallone, P. Zordan, M. Sormani, P.A. Nicolosi, R. Meneveri, C.R. Gigliotti, A.E. Spinelli, R. Bocciardi, R. Ravazzolo, I. Cifola, and S. Brunelli. 2019. Severe heterotopic ossification in the skeletal muscle and endothelial cells recruitment to chondrogenesis are enhanced by monocyte/macrophage depletion. Frontiers in Immunology 10: 1640. https://doi.org/10.3389/fimmu.2019.01640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gambari, L., F. Grassi, L. Roseti, B. Grigolo, and G. Desando. 2020. Learning from monocyte-macrophage fusion and multinucleation: potential therapeutic targets for osteoporosis and rheumatoid arthritis. International Journal of Molecular Sciences 21 (17). https://doi.org/10.3390/ijms21176001.

  28. Tintut, Y., J. Patel, M. Territo, T. Saini, F. Parhami, and L.L. Demer. 2002. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation 105 (5): 650–655. https://doi.org/10.1161/hc0502.102969.

    Article  CAS  PubMed  Google Scholar 

  29. Mirza, R., and T.J. Koh. 2011. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine 56 (2): 256–264. https://doi.org/10.1016/j.cyto.2011.06.016.

    Article  CAS  PubMed  Google Scholar 

  30. Sinder, B.P., A.R. Pettit, and L.K. McCauley. 2015. Macrophages: Their emerging roles in bone. Journal of Bone and Mineral Research 30 (12): 2140–2149. https://doi.org/10.1002/jbmr.2735.

    Article  PubMed  Google Scholar 

  31. van Rooijen, N., and E. van Kesteren-Hendrikx. 2002. Clodronate liposomes: Perspectives in research and therapeutics. Journal of Liposome Research 12 (1–2): 81–94. https://doi.org/10.1081/lpr-120004780.

    Article  PubMed  Google Scholar 

  32. Legosz, P., K. Drela, L. Pulik, S. Sarzynska, and P. Maldyk. 2018. Challenges of heterotopic ossification-molecular background and current treatment strategies. Clinical and Experimental Pharmacology and Physiology 45 (12): 1229–1235. https://doi.org/10.1111/1440-1681.13025.

    Article  CAS  PubMed  Google Scholar 

  33. Kusumbe, A.P., S.K. Ramasamy, and R.H. Adams. 2014. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507 (7492): 323–328. https://doi.org/10.1038/nature13145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, L., Q. Shen, H. Leng, X. Duan, X. Fu, and C. Yu. 2011. Synergistic inhibition of endochondral bone formation by silencing Hif1alpha and Runx2 in trauma-induced heterotopic ossification. Molecular Therapy 19 (8): 1426–1432. https://doi.org/10.1038/mt.2011.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hwang, C., S. Marini, A.K. Huber, D.M. Stepien, M. Sorkin, S. Loder, C.A. Pagani, J. Li, N.D. Visser, K. Vasquez, M.A. Garada, S. Li, J. Xu, C.Y. Hsu, P.B. Yu, A.W. James, Y. Mishina, S. Agarwal, J. Li, and B. Levi. 2019. Mesenchymal VEGFA induces aberrant differentiation in heterotopic ossification. Bone Research 7: 36. https://doi.org/10.1038/s41413-019-0075-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cocks, M., A. Mohan, C.A. Meyers, C. Ding, B. Levi, E. McCarthy, and A.W. James. 2017. Vascular patterning in human heterotopic ossification. Human Pathology 63: 165–170. https://doi.org/10.1016/j.humpath.2017.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dilling, C.F., A.M. Wada, Z.W. Lazard, E.A. Salisbury, F.H. Gannon, T.J. Vadakkan, L. Gao, K. Hirschi, M.E. Dickinson, A.R. Davis, and E.A. Olmsted-Davis. 2010. Vessel formation is induced prior to the appearance of cartilage in BMP-2-mediated heterotopic ossification. Journal of Bone and Mineral Research 25 (5): 1147–1156. https://doi.org/10.1359/jbmr.091031.

    Article  CAS  PubMed  Google Scholar 

  38. Dey, D., B.M. Wheatley, D. Cholok, S. Agarwal, P.B. Yu, B. Levi, and T.A. Davis. 2017. The traumatic bone: Trauma-induced heterotopic ossification. Translational Research 186: 95–111. https://doi.org/10.1016/j.trsl.2017.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meyers, C., J. Lisiecki, S. Miller, A. Levin, L. Fayad, C. Ding, T. Sono, E. McCarthy, B. Levi, and A.W. James. 2019. Heterotopic ossification: A comprehensive review. JBMR Plus 3 (4): e10172. https://doi.org/10.1002/jbm4.10172.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Foley, K.L., N. Hebela, M.A. Keenan, and R.J. Pignolo. 2018. Histopathology of periarticular non-hereditary heterotopic ossification. Bone 109: 65–70. https://doi.org/10.1016/j.bone.2017.12.006.

    Article  CAS  PubMed  Google Scholar 

  41. Xiao, X., I. Gaffar, P. Guo, J. Wiersch, S. Fischbach, L. Peirish, Z. Song, Y. El-Gohary, K. Prasadan, C. Shiota, and G.K. Gittes. 2014. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proceedings of the National Academy of Sciences of the United States of America 111 (13): E1211–E1220. https://doi.org/10.1073/pnas.1321347111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van der Kraan, P.M., E.N. Blaney Davidson, A. Blom, and W.B. van den Berg. 2009. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: Modulation and integration of signaling pathways through receptor-Smads. Osteoarthritis Cartilage 17 (12): 1539–1545. https://doi.org/10.1016/j.joca.2009.06.008.

    Article  PubMed  Google Scholar 

  43. Wang, W., D. Rigueur, and K.M. Lyons. 2014. TGFbeta signaling in cartilage development and maintenance. Birth Defects Research. Part C, Embryo Today 102 (1): 37–51. https://doi.org/10.1002/bdrc.21058.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, X., F. Li, L. Xie, J. Crane, G. Zhen, Y. Mishina, R. Deng, B. Gao, H. Chen, S. Liu, P. Yang, M. Gao, M. Tu, Y. Wang, M. Wan, C. Fan, and X. Cao. 2018. Inhibition of overactive TGF-beta attenuates progression of heterotopic ossification in mice. Nature Communications 9 (1): 551. https://doi.org/10.1038/s41467-018-02988-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barruet, E., B.M. Morales, C.J. Cain, A.N. Ton, K.L. Wentworth, T.V. Chan, T.A. Moody, M.C. Haks, T.H. Ottenhoff, J. Hellman, M.C. Nakamura, and E.C. Hsiao. 2018. NF-kappaB/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight 3 (22). https://doi.org/10.1172/jci.insight.122958.

Download references

Funding

This study is financially supported by the Science and Technology Commission of Shanghai Municipality (grant 19ZR1438900), the Key Project of National Natural Science Foundation of China (No.81830076), the Biomedical Technology Support Special Project of Shanghai “Science and Technology Innovation Action Plan” (No.20S31900300), the Shanghai Engineering Technology Research Center and Professional Technology Service Platform project of 2020 “Science and Technology Innovation Action Plan” of Shanghai(No.20DZ2254100), and the Shanghai ShenKang Hospital Development Center, Clinical Research Plan of SHDC (grant number: SHDC2020CR6019).

Author information

Authors and Affiliations

Authors

Contributions

Bing Tu and Cunyi Fan designed the study; Feng Yuan collected the clinical samples; Bing Tu, Juehong Li, Ziyang Sun, TongTong Zhang, and Hang Liu performed the experiments and analyzed the data; Bing Tu and Feng Yuan evaluated the data and wrote the manuscript.

Corresponding authors

Correspondence to Feng Yuan or Cunyi Fan.

Ethics declarations

Ethics Approval

All experiments were approved by the Ethics Committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1480 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, B., Li, J., Sun, Z. et al. Macrophage-Derived TGF-β and VEGF Promote the Progression of Trauma-Induced Heterotopic Ossification. Inflammation 46, 202–216 (2023). https://doi.org/10.1007/s10753-022-01723-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01723-z

KEY WORDS

Navigation