Skip to main content
Log in

Modulation of Microglia M2 Polarization and Alleviation of Hippocampal Neuron Injury By MiR-106b-5p/RGMa in a Mouse Model of Status Epilepticus

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level. The miRNA miR-106b-5p has been linked to epilepsy, but its specific role and mechanism of action remain unclear. This was investigated in the present study using a mouse model of pilocarpine-induced status epilepticus and an in vitro system of HT22 hippocampal cells treated with Mg2+-free solution and cocultured with BV2 microglia cells. We found that inhibiting miR-106b-5p expression promoted microglia M2 polarization, reduced the inflammatory response, and alleviated neuronal injury. These effects involved modulation of the repulsive guidance molecule A (RGMa)–Rac1–c-Jun N-terminal kinase (JNK)/p38–mitogen-activated protein kinase (MAPK) signaling axis. Our results suggest that therapeutic strategies targeting miR-106b-5p or downstream factors can be effective in preventing epileptogenesis or treating epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

DATA AVAILABILITY

All data generated or analyzed in this study are included in this article. The datasets used and/or analyzed in the study are available from the corresponding author on reasonable request.

References

  1. Fiest, K.M., K.M. Sauro, S. Wiebe, S.B. Patten, C.S. Kwon, J. Dykeman, et al. 2017. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 88: 296–303.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thurman, D.J., C.E. Begley, A. Carpio, S. Helmers, D.C. Hesdorffer, J. Mu, et al. 2018. The primary prevention of epilepsy: A report of the Prevention Task Force of the International League Against Epilepsy. Epilepsia 59: 905–914.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kalilani, L., X. Sun, B. Pelgrims, M. Noack-Rink, and V. Villanueva. 2018. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia 59: 2179–2193.

    Article  PubMed  Google Scholar 

  4. Aronica, E., K. Fluiter, A. Iyer, E. Zurolo, J. Vreijling, E.A. van Vliet, et al. 2010. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. European Journal of Neuroscience 31: 1100–1107.

    Article  CAS  PubMed  Google Scholar 

  5. Korotkov, A., D. Broekaart, L. Banchaewa, B. Pustjens, J. van Scheppingen, J.J. Anink, et al. 2020. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia 68: 60–75.

    Article  PubMed  Google Scholar 

  6. Zhao, X., Y. Liao, S. Morgan, R. Mathur, P. Feustel, J. Mazurkiewicz, et al. 2018. Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell Reports 22: 2080–2093.

    Article  CAS  PubMed  Google Scholar 

  7. Broekaart, D., J.J. Anink, J.C. Baayen, S. Idema, H.E. de Vries, E. Aronica, et al. 2018. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia 59: 1931–1944.

    Article  CAS  PubMed  Google Scholar 

  8. Crespel, A., P. Coubes, M.C. Rousset, C. Brana, A. Rougier, G. Rondouin, et al. 2002. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Research 952: 159–169.

    Article  CAS  PubMed  Google Scholar 

  9. Najjar, S., D. Pearlman, D.C. Miller, and O. Devinsky. 2011. Refractory epilepsy associated with microglial activation. The Neurologist 17: 249–254.

    Article  PubMed  Google Scholar 

  10. Benson, M.J., S. Manzanero, and K. Borges. 2015. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 56: 895–905.

    Article  CAS  PubMed  Google Scholar 

  11. Colonna, M., and O. Butovsky. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annual Review of Immunology 35: 441–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo, C., R. Koyama, and Y. Ikegaya. 2016. Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia 64: 1508–1517.

    Article  PubMed  Google Scholar 

  13. Wyatt-Johnson, S.K., and A.L. Brewster. 2020. Emerging roles for microglial phagocytic signaling in epilepsy. Epilepsy Currents 20: 33–38.

    Article  PubMed  Google Scholar 

  14. Andoh, M., Y. Ikegaya, and R. Koyama. 2019. Synaptic pruning by microglia in epilepsy. Journal of Clinical Medicine 8: 2170.

    Article  CAS  PubMed Central  Google Scholar 

  15. Sun, X., J. Sun, X. Shao, J. Feng, J. Yan, and Y. Qin. 2018. Inhibition of microRNA-155 modulates endotoxin tolerance by upregulating suppressor of cytokine signaling 1 in microglia. Experimental and Therapeutic Medicine 15: 4709–4716.

    PubMed  PubMed Central  Google Scholar 

  16. Yu, A., T. Zhang, H. Duan, Y. Pan, X. Zhang, G. Yang, et al. 2017. MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-α pathway in intracerebral hemorrhage. Immunology Letters 182: 1–11.

    Article  CAS  PubMed  Google Scholar 

  17. Tao, Y., Z. Wang, L. Wang, J. Shi, X. Guo, W. Zhou, et al. 2017. Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatology (Oxford, England) 56: 1804–1813.

    Article  CAS  Google Scholar 

  18. Li, P., M. Shen, F. Gao, J. Wu, J. Zhang, F. Teng, et al. 2017. An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. Molecular Neurobiology 54: 2901–2921.

    Article  CAS  PubMed  Google Scholar 

  19. Li, J.Q., J.M. Tian, X.R. Fan, Z.Y. Wang, J. Ling, X.F. Wu, et al. 2020. miR-106b-5p induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura through NR4A3/Foxp3 pathway. Cell Cycle 19: 1265–1274.

    Article  PubMed  PubMed Central  Google Scholar 

  20. An, N., W. Zhao, Y. Liu, X. Yang, and P. Chen. 2016. Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy. Epilepsy Research 127: 311–316.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, J., Y. Sang, Y. Zhang, D. Zhang, J. Chen, and X. Liu. 2019. Efficacy of levetiracetam combined with sodium valproate on pediatric epilepsy and its effect on serum miR-106b in children. Experimental and Therapeutic Medicine 18: 4436–4442.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, Q., J. Chen, X. Zheng, Y. Zhang, X. Tao, and J. Ye. 2020. Circular RNA circ_ANKMY2 regulates temporal lobe epilepsy progression via the miR-106b-5p/FOXP1 axis. Neurochemical Research 45: 3034–3044.

    Article  CAS  PubMed  Google Scholar 

  23. Zheng, D., M. Li, G. Li, J. Hu, X. Jiang, Y. Wang, et al. 2021. Circular RNA circ_DROSHA alleviates the neural damage in a cell model of temporal lobe epilepsy through regulating miR-106b-5p/MEF2C axis. Cellular Signalling 80: 109901.

    Article  CAS  PubMed  Google Scholar 

  24. Siebold, C., T. Yamashita, P.P. Monnier, B.K. Mueller, and R.J. Pasterkamp. 2017. RGMs: Structural insights, molecular regulation, and downstream signaling. Trends in Cell Biology 27: 365–378.

    Article  CAS  PubMed  Google Scholar 

  25. De Vries, M., and H.M. Cooper. 2008. Emerging roles for neogenin and its ligands in CNS development. Journal of Neurochemistry 106: 1483–1492.

    Article  PubMed  Google Scholar 

  26. Xia, Y., P.B. Yu, Y. Sidis, H. Beppu, K.D. Bloch, A.L. Schneyer, et al. 2007. Repulsive guidance molecule RGMa alters utilization of bone morphogenetic protein (BMP) type II receptors by BMP2 and BMP4. The Journal of Biological Chemistry 282: 18129–18140.

    Article  CAS  PubMed  Google Scholar 

  27. Tanabe, S., Y. Fujita, K. Ikuma, and T. Yamashita. 2018. Inhibiting repulsive guidance molecule-a suppresses secondary progression in mouse models of multiple sclerosis. Cell Death & Disease 9: 1061.

    Article  Google Scholar 

  28. Tanabe, S., and T. Yamashita. 2014. Repulsive guidance molecule-a is involved in Th17-cell-induced neurodegeneration in autoimmune encephalomyelitis. Cell Reports 9: 1459–1470.

    Article  CAS  PubMed  Google Scholar 

  29. Harada, K., Y. Fujita, T. Okuno, S. Tanabe, Y. Koyama, H. Mochizuki, et al. 2018. Inhibition of RGMa alleviates symptoms in a rat model of neuromyelitis optica. Scientific Reports 8: 34.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nakagawa, H., T. Ninomiya, T. Yamashita, and M. Takada. 2019. Treatment with the neutralizing antibody against repulsive guidance molecule-a promotes recovery from impaired manual dexterity in a primate model of spinal cord injury. Cerebral Cortex 29: 561–572.

    Article  PubMed  Google Scholar 

  31. Korecka, J.A., E.B. Moloney, R. Eggers, B. Hobo, S. Scheffer, N. Ras-Verloop, et al. 2017. Repulsive guidance molecule a (RGMa) induces neuropathological and behavioral changes that closely resemble Parkinson’s disease. The Journal of Neuroscience 37: 9361–9379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, T., H. Fu, J.J. Sun, D.R. Ding, and H. Wang. 2021. miR-106b-5p upregulation is associated with microglial activation and inflammation in the mouse hippocampus following status epilepticus. Experimental Brain Research 239: 3315–3325.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, X., Y. Yao, Y. Liu, R. Zhou, W. Zhang, Q. Hu, et al. 2019. Regulation of ADAM10 by microRNA-23a contributes to epileptogenesis in pilocarpine-induced status epilepticus mice. Frontiers in Cellular Neuroscience 13: 180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ren, X.Q., R. Ma, C.Q. Yang, Q.H. Liu, J. Jiao, X.L. Zhang, et al. 2016. Kangxian capsules: Effects on convulsive injuries, N-methyl-d-aspartate (NMDA) receptor subunit expression, and free Ca(2+) concentration in a rat hippocampal neuron epileptic discharge model. Seizure 40: 27–32.

    Article  PubMed  Google Scholar 

  35. Li, T., X. Zhai, J. Jiang, X. Song, W. Han, J. Ma, et al. 2017. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Research 1657: 120–129.

    Article  CAS  PubMed  Google Scholar 

  36. Becker, A.J. 2018. Review: Animal models of acquired epilepsy: Insights into mechanisms of human epileptogenesis. Neuropathology and Applied Neurobiology 44: 112–129.

    Article  CAS  PubMed  Google Scholar 

  37. Engel, J., Jr., and A. Pitkänen. 2020. Biomarkers for epileptogenesis and its treatment. Neuropharmacology 167: 107735.

    Article  CAS  PubMed  Google Scholar 

  38. Terrone, G., A. Salamone, and A. Vezzani. 2017. Inflammation and epilepsy: Preclinical findings and potential clinical translation. Current Pharmaceutical Design 23: 5569–5576.

    Article  CAS  PubMed  Google Scholar 

  39. Tang, Y., and W. Le. 2016. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology 53: 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  40. Therajaran, P., J.A. Hamilton, T.J. O’Brien, N.C. Jones, and I. Ali. 2020. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 61: 203–215.

    Article  PubMed  Google Scholar 

  41. Ransohoff, R.M. 2016. A polarizing question: do M1 and M2 microglia exist? Nature Neuroscience 19 (8): 987–91. https://doi.org/10.1038/nn.4338. PMID: 27459405.

    Article  CAS  PubMed  Google Scholar 

  42. Hu, X., R.K. Leak, Y. Shi, J. Suenaga, Y. Gao, P. Zheng, et al. 2015. Microglial and macrophage polarization—new prospects for brain repair. Nature Reviews. Neurology 11: 56–64.

    Article  PubMed  Google Scholar 

  43. Heo, K., Y.-J. Cho, K.-J. Cho, H.-W. Kim, H.-J. Kim, H.Y. Shin, et al. 2006. Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neuroscience Letters 398: 195–200.

    Article  CAS  PubMed  Google Scholar 

  44. Abraham, J., P.D. Fox, C. Condello, A. Bartolini, and S. Koh. 2012. Minocycline attenuates microglia activation and blocks the long-term epileptogenic effects of early-life seizures. Neurobiology of Disease 46: 425–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng, L., M. Murugan, D.B. Bosco, Y. Liu, J. Peng, G.A. Worrell, et al. 2019. Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus. Glia 67: 1434–1448.

    PubMed  PubMed Central  Google Scholar 

  46. Scott, A.J., L. Sharpe, C. Hunt, and M. Gandy. 2017. Anxiety and depressive disorders in people with epilepsy: A meta-analysis. Epilepsia 58: 973–982.

    Article  PubMed  Google Scholar 

  47. Pineda, E., D. Shin, R. Sankar, and A.M. Mazarati. 2010. Comorbidity between epilepsy and depression: Experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms. Epilepsia 51: 110–114.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shen, Y., W. Peng, Q. Chen, B.D. Hammock, J. Liu, D. Li, et al. 2019. Anti-inflammatory treatment with a soluble epoxide hydrolase inhibitor attenuates seizures and epilepsy-associated depression in the LiCl-pilocarpine post-status epilepticus rat model. Brain, Behavior, and Immunity 81: 535–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kanner, A.M. 2011. Depression and epilepsy: A bidirectional relation? Epilepsia 52: 21–27.

    Article  PubMed  Google Scholar 

  50. Vezzani, A., B. Lang, and E. Aronica. 2015. Immunity and inflammation in epilepsy. Cold Spring Harbor Perspectives in Medicine 6: a022699.

    Article  PubMed  Google Scholar 

  51. Xu, X., Y. Gao, F. Shan, and J. Feng. 2016. A novel role for RGMa in modulation of bone marrow-derived dendritic cells maturation induced by lipopolysaccharide. International Immunopharmacology 33: 99–107.

    Article  CAS  PubMed  Google Scholar 

  52. Muramatsu, R., T. Kubo, M. Mori, Y. Nakamura, Y. Fujita, T. Akutsu, et al. 2011. RGMa modulates T cell responses and is involved in autoimmune encephalomyelitis. Nature Medicine 17: 488–494.

    Article  CAS  PubMed  Google Scholar 

  53. Körner, A., M. Schlegel, T. Kaussen, V. Gudernatsch, G. Hansmann, T. Schumacher, et al. 2019. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nature Communications 10: 633.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Oda, W., Y. Fujita, K. Baba, H. Mochizuki, H. Niwa, and T. Yamashita. 2021. Inhibition of repulsive guidance molecule-a protects dopaminergic neurons in a mouse model of Parkinson’s disease. Cell Death & Disease 12: 181.

    Article  CAS  Google Scholar 

  55. Bishop, A.L., and A. Hall. 2000. Rho GTPases and their effector proteins. The Biochemical journal 348: 241–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. D’Ambrosi, N., S. Rossi, V. Gerbino, and M. Cozzolino. 2014. Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience 8: 279.

    PubMed  PubMed Central  Google Scholar 

  57. Persson, A.K., M. Estacion, H. Ahn, S. Liu, S. Stamboulian-Platel, S.G. Waxman, et al. 2014. Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP-stimulated microglia. Glia 62: 2080–2095.

    Article  PubMed  Google Scholar 

  58. Xu, Y., W. Hu, Y. Liu, P. Xu, Z. Li, R. Wu, et al. 2016. P2Y6 receptor-mediated microglial phagocytosis in radiation-induced brain injury. Molecular Neurobiology 53: 3552–3564.

    Article  CAS  PubMed  Google Scholar 

  59. De Caris, M.G., M. Grieco, E. Maggi, A. Francioso, F. Armeli, L. Mosca, et al. 2020. Blueberry counteracts BV-2 microglia morphological and functional switch after LPS challenge. Nutrients 12: 1830.

    Article  PubMed Central  Google Scholar 

  60. Bianchi, R., I. Giambanco, and R. Donato. 2010. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiology of Aging 31: 665–677.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, Q., Y. Zhang, S. Liu, Y. Liu, X. Yang, G. Liu, et al. 2019. Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca-dependent PKC/p38MAPK/NF-κB pathway. Journal of Neuroinflammation 16: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Plastira, I., E. Bernhart, L. Joshi, C.N. Koyani, H. Strohmaier, H. Reicher, et al. 2020. MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. Journal of Neuroinflammation 17: 127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, E.K., and E.J. Choi. 2015. Compromised MAPK signaling in human diseases: An update. Archives of Toxicology 89: 867–882.

    Article  CAS  PubMed  Google Scholar 

  64. Kaminska, B., Gozdz, A., Zawadzka, M., Ellert-Miklaszewska, A., and Lipko, M. 2009. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anatomical Record (Hoboken, N.J.: 2007) 292: 1902–1913.

Download references

ACKNOWLEDGEMENTS

Not applicable.

Funding

This work was supported by grants from CAAE Epilepsy Research Fund (CX-B-2021–02).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. The first draft of the manuscript was written by Tao Yu, and all authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Hua Wang.

Ethics declarations

Ethics Approval

Animal experiments were approved by the Animal Ethics Committee of Shengjing Hospital Affiliated with China Medical University (no. 2020PS505K).

Consent for Publication

All authors read, approved, and consented to publish the final manuscript.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 242 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Huo, L., Lei, J. et al. Modulation of Microglia M2 Polarization and Alleviation of Hippocampal Neuron Injury By MiR-106b-5p/RGMa in a Mouse Model of Status Epilepticus. Inflammation 45, 2223–2242 (2022). https://doi.org/10.1007/s10753-022-01686-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01686-1

KEY WORDS

Navigation