Skip to main content

Advertisement

Log in

CircOAS3 Regulates Keratinocyte Proliferation and Psoriatic Inflammation by Interacting with Hsc70 via the JNK/STAT3/NF-κB Signaling Pathway

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Psoriasis is a chronic inflammatory disease of the skin with a very complex pathogenesis. Circular RNAs (circRNAs) play important regulatory roles in many diseases, including psoriasis. In this study, we found that circOAS3 expression was significantly upregulated in both psoriatic tissues and M5-induced keratinocytes. Silencing circOAS3 in HaCaT and Ker-CT cells inhibited their viability, promoted apoptosis, and blocked the cell cycle from the G1 to the S phase. RNA pull-down and RNA immunoprecipitation (RIP) analyses led to the identification of a direct interaction between circOAS3 and heat shock cognate protein 70 (Hsc70). Silencing circOAS3 expression negatively influenced Hsc70 protein expression but not mRNA expression. circOAS3 knockdown suppressed the activation of the JNK/STAT3/NF-κB signaling pathway. circOAS3 or Hsc70 silencing led to downregulated protein IL-6 expression, thus reducing psoriatic inflammation in vitro. In conclusion, the interaction between circOAS3 and Hsc70 mediates the proliferation and psoriatic inflammation of HaCaT and Ker-CT cells through the JNK/STAT3/NF-κB signaling pathway, suggesting that circOAS3 or Hsc70 may be a promising therapeutic target for psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

AVAILABILITY OF DATA AND MATERIALS

The original data are maintained by the first author and the corresponding author, and all experimental raw data can be obtained from either of these authors when necessary.

References

  1. Gelfand, J., et al. 2005. The prevalence of psoriasis in African Americans: Results from a population-based study. Journal of the American Academy of Dermatology 52 (1): 23–26.

    Article  PubMed  Google Scholar 

  2. Kastelan, M., L. Prpić-Massari, and I. Brajac. 2009. Apoptosis in psoriasis. Acta dermatovenerologica Croatica : ADC 17 (3): 182–186.

    CAS  PubMed  Google Scholar 

  3. Liu, Y., J. Krueger, and A. Bowcock. 2007. Psoriasis: Genetic associations and immune system changes. Genes and Immunity 8 (1): 1–12.

    Article  PubMed  Google Scholar 

  4. Wolf, N., et al. 2008. Psoriasis is associated with pleiotropic susceptibility loci identified in type II diabetes and Crohn disease. Journal of Medical Genetics 45 (2): 114–116.

    Article  CAS  PubMed  Google Scholar 

  5. Harden, J., J. Krueger, and A. Bowcock. 2015. The immunogenetics of Psoriasis: A comprehensive review. Journal of Autoimmunity 64: 66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, L., et al. 2020. hsa_circ_0003738 inhibits the suppressive function of tregs by targeting miR-562/IL-17A and miR-490-5p/IFN-gamma signaling pathway. Molecular Therapy Nucleic Acids 21: 1111–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsiao, K.Y., et al. 2017. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Research 77 (9): 2339–2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He, J., et al. 2020. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Molecular Cancer 19 (1): 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filippenkov, I., et al. 2017. Circular RNAs-one of the enigmas of the brain. Neurogenetics 18 (1): 1–6.

    Article  CAS  PubMed  Google Scholar 

  10. Li, X., L. Yang, and L.L. Chen. 2018. The biogenesis, functions, and challenges of circular RNAs. Molecular Cell 71 (3): 428–442.

    Article  CAS  PubMed  Google Scholar 

  11. Qu, S., et al. 2017. The emerging landscape of circular RNA in life processes. RNA Biology 14 (8): 992–999.

    Article  PubMed  Google Scholar 

  12. Wang, L., et al. 2021. A novel tumour suppressor protein encoded by circMAPK14 inhibits progression and metastasis of colorectal cancer by competitively binding to MKK611 (10): p. e613.

  13. Geng, X., et al. 2021. Circular RNA circCOL6A3_030 is involved in the metastasis of gastric cancer by encoding polypeptide 12(1): p. 8202–8216.

  14. Qiao, M., et al. 2018. Circular RNA expression profile and analysis of their potential function in psoriasis. Cellular Physiology and Biochemistry 50 (1): 15–27.

    Article  CAS  PubMed  Google Scholar 

  15. He, Q., et al. 2021. Circ_0061012 contributes to IL-22-induced proliferation, migration and invasion in keratinocytes through miR-194–5p/GAB1 axis in psoriasis. Bioscience reports 41 (1).

  16. Yang, L., et al. 2020. hsa_circ_0003738 inhibits the suppressive function of tregs by targeting miR-562/IL-17A and miR-490-5p/IFN-γ signaling pathway. Molecular Therapy Nucleic Acids 21: 1111–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramirez, R.D., et al. 2003. Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene 22 (3): 433–444.

    Article  CAS  PubMed  Google Scholar 

  18. Vaughan, M., et al. 2004. A reproducible laser-wounded skin equivalent model to study the effects of aging in vitro. Rejuvenation Research 7 (2): 99–110.

    Article  CAS  PubMed  Google Scholar 

  19. Beckert, B., et al. 2019. Immortalized human hTert/KER-CT keratinocytes a model system for research on desmosomal adhesion and pathogenesis of pemphigus vulgaris. International Journal of Molecular Sciences 20 (13).

  20. Ashburner, M., et al. 2000. Gene ontology: Tool for the unification of biology The Gene Ontology Consortium. Nature Genetics 25 (1): 25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Du, J., et al. 2014. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Molecular BioSystems 10 (9): 2441–2447.

    Article  CAS  PubMed  Google Scholar 

  22. Bu, D., et al. 2021. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research 49 (W1): W317–W325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. 57 (1): 289–300.

    Google Scholar 

  24. Sun, G., et al. 2019. Overexpression of Hsc70 promotes proliferation, migration, and invasion of human glioma cells. Journal of Cellular Biochemistry 120 (6): 10707–10714.

    Article  CAS  PubMed  Google Scholar 

  25. Hino, H., et al. 2015. Interaction of Cx43 with Hsc70 regulates G1/S transition through CDK inhibitor p27. Scientific Reports 5: 15365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, Y., et al. 2016. EF1A1/HSC70 cooperatively suppress brain endothelial cell apoptosis via regulating JNK activity. CNS Neuroscience & Therapeutics 22 (10): 836–844.

    Article  CAS  Google Scholar 

  27. Wang, L., et al. 2018. TXNDC5 synergizes with HSC70 to exacerbate the inflammatory phenotype of synovial fibroblasts in rheumatoid arthritis through NF-κB signaling. Cellular & Molecular Immunology 15 (7): 685–696.

    Article  CAS  Google Scholar 

  28. Boehncke, W., et al. 1994. Differential expression of heat shock protein 70 (HSP70) and heat shock cognate protein 70 (HSC70) in human epidermis. Archives of Dermatological Research 287 (1): 68–71.

    Article  CAS  PubMed  Google Scholar 

  29. Sun, G., et al. 2019. Hsc70 interacts with β4GalT5 to regulate the growth of gliomas. Neuromolecular Medicine 21 (1): 33–41.

    Article  CAS  PubMed  Google Scholar 

  30. Bhargavan, B., and G.D. Kanmogne. 2018. Toll-like receptor-3 mediates HIV-1-induced interleukin-6 expression in the human brain endothelium via TAK1 and JNK pathways: implications for viral neuropathogenesis 55(7): p. 5976–5992.

  31. Nan, J., et al. 2018. IRF9 and unphosphorylated STAT2 cooperate with NF-κB to drive IL6 expression 115(15): p. 3906–3911.

  32. Zampetti, A., et al. 2009. Proinflammatory cytokine production in HaCaT cells treated by eosin: Implications for the topical treatment of psoriasis. 22 (4): 1067–1075.

    CAS  Google Scholar 

  33. Wang, A., et al. 2019. Genistein suppresses psoriasis-related inflammation through a STAT3-NF-κB-dependent mechanism in keratinocytes 69: p. 270–278.

  34. Fujihara, S., et al. 2000. A D-amino acid peptide inhibitor of NF-kappa B nuclear localization is efficacious in models of inflammatory disease. Journal of Immunology (Baltimore, Md. : 1950) 165(2): p. 1004–12.

  35. Griffiths, C., et al. 2021. Psoriasis. Lancet (London, England) 397 (10281): 1301–1315.

    Article  CAS  Google Scholar 

  36. Wójcik, P., et al. 2021. Disease-dependent antiapoptotic effects of cannabidiol for keratinocytes observed upon UV irradiation. International Journal of Molecular Sciences 22 (18).

  37. Song, C., et al. 2021. Circular RNA Cwc27 contributes to Alzheimer’s disease pathogenesis by repressing Pur-α activity. Cell Death and Differentiation.

  38. Yoon, G., et al. 2021. Obesity-linked circular RNA circTshz2–2 regulates the neuronal cell cycle and spatial memory in the brain. Molecular Psychiatry.

  39. Jia, L., Y. Wang, and C. Wang. 2021. circFAT1 promotes cancer stemness and immune evasion by promoting STAT3 activation. Advanced Science (Weinheim, Baden-Wurttemberg, Germany). 8(13): p. 2003376

  40. O’Malley, K., et al. 1985. Constitutively expressed rat mRNA encoding a 70-kilodalton heat-shock-like protein. Molecular and Cellular Biology 5 (12): 3476–3483.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Aquino, D.A., et al. 1998. The constitutive heat shock protein-70 is required for optimal expression of myelin basic protein during differentiation of oligodendrocytes. Neurochemical Research 23 (3): 413–420.

    Article  CAS  PubMed  Google Scholar 

  42. Beckmann, R.P., L.E. Mizzen, and W.J. Welch. 1990. Interaction of Hsp 70 with newly synthesized proteins: Implications for protein folding and assembly. Science 248 (4957): 850–854.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Z., et al. 2019. GKN2 promotes oxidative stress-induced gastric cancer cell apoptosis via the Hsc70 pathway. Journal of Experimental & Clinical Cancer Research: CR 38 (1): 338.

    Article  PubMed Central  Google Scholar 

  44. Deffit, S.N., and J.S. Blum. 2015. A central role for HSC70 in regulating antigen trafficking and MHC class II presentation. Moleculary Immunology 68 (2 Pt A): p. 85–8.

  45. Saggini, A., S. Chimenti, and A. Chiricozzi. 2014. IL-6 as a druggable target in psoriasis: focus on pustular variants 2014: p. 964069.

  46. Goodman, W., et al. 2009. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells 183 (5): p. 3170–6.

Download references

ACKNOWLEDGEMENTS

The authors thank all the members of the laboratory for their help.

Funding

This work was supported by the National Major Science and Technology Projects of China (Grant No. 2017YFA0104604) and the National Natural Science Foundation of China (Grant Nos. 81972937 and 82003344).

Author information

Authors and Affiliations

Authors

Contributions

Zhenxian Yang contributed to the conception and design of the work and the analysis and interpretation of the data and drafted the manuscript. Xiran Yin and Cheng Chen contributed to the design of the work and the analysis and interpretation of the data. Shan Huang, Xueqing Li, and Jianjun Yan contributed to the acquisition and interpretation of the data. Qing Sun contributed to the conception and design of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qing Sun.

Ethics declarations

Ethics Approval and Consent to Participate

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by Qilu Hospital of Shandong University, which issued an affidavit of approval of animal ethics and welfare (No. KYLL-2017(KS)-152).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SUPPLEMENTAY INFORMATION

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yin, X., Chen, C. et al. CircOAS3 Regulates Keratinocyte Proliferation and Psoriatic Inflammation by Interacting with Hsc70 via the JNK/STAT3/NF-κB Signaling Pathway. Inflammation 45, 1924–1935 (2022). https://doi.org/10.1007/s10753-022-01664-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01664-7

KEY WORDS

Navigation