Skip to main content

Advertisement

Log in

Exposure to Sodium Hypochlorite or Cigarette Smoke Induces Lung Injury and Mechanical Impairment in Wistar Rats

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Pulmonary irritants, such as cigarette smoke (CS) and sodium hypochlorite (NaClO), are associated to pulmonary diseases in cleaning workers. We examined whether their association affects lung mechanics and inflammation in Wistar rats. Exposure to these irritants alone induced alterations in the lung mechanics, inflammation, and remodeling. The CS increased airway cell infiltration, acid mucus production, MMP-12 expression, and alveolar enlargement. NaClO increased the number of eosinophils and macrophages in the bronchoalveolar lavage fluid, with cells expressing IL-13, MMP-12, MMP-9, TIMP-1, and iNOS in addition to increased IL-1β and TNF-α levels. Co-exposure to both irritants increased epithelial and smooth muscle cell area, acid mucus production, and IL-13 expression in the airways, while it reduced the lung inflammation. In conclusion, the co-exposure of CS with NaClO reduced the pulmonary inflammation, but increased the acidity of mucus, which may protect lungs from more injury. A cross-resistance in people exposed to multiple lung irritants should also be considered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. WHO. 2012. Global report: Mortality attributable to tobacco. Geneva: World Health Organization.

    Google Scholar 

  2. WHO. 2018. Global report on trends in prevalence of tobacco smoking 2000–2025. Geneva: World Health Organization.

    Google Scholar 

  3. Hoffmann, D., M.V. Djordjevic, and I. Hoffmann. 1997. The changing cigarette. Preventive Medicine 26 (4): 427–434. https://doi.org/10.1006/pmed.1997.0183.

    Article  CAS  PubMed  Google Scholar 

  4. Piipari, R., J.J. Jaakkola, N. Jaakkola, and M.S. Jaakkola. 2004. Smoking and asthma in adults. European Respiratory Journal 24 (5): 734–739. https://doi.org/10.1183/09031936.04.00116903.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, Z., P. Chen, and H. Peng. 2016. Are healthy smokers really healthy? Tobacco Induced Diseases 14: 35. https://doi.org/10.1186/s12971-016-0101-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, J., V. Taneja, and R. Vassallo. 2012. Cigarette smoking and inflammation: Cellular and molecular mechanisms. Journal of Dental Research 91 (2): 142–149. https://doi.org/10.1177/0022034511421200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mandelzys, A., and E. Cooper. 1992. Effects of ganglionic satellite cells and NGF on the expression of nicotinic acetylcholine currents by rat sensory neurons. Journal of Neurophysiology 67 (5): 1213–1221.

    Article  CAS  Google Scholar 

  8. Maneckjee, R., and J.D. Minna. 1994. Opioids induce while nicotine suppresses apoptosis in human lung cancer cells. Cell Growth & Differentiation 5 (10): 1033–1040.

    CAS  Google Scholar 

  9. Benowitz, N.L. 2008. Neurobiology of nicotine addiction: Implications for smoking cessation treatment. American Journal of Medicine 121 (4 Suppl 1): S3-10. https://doi.org/10.1016/j.amjmed.2008.01.015.

    Article  CAS  PubMed  Google Scholar 

  10. Drenan, R.M., and H.A. Lester. 2012. Insights into the neurobiology of the nicotinic cholinergic system and nicotine addiction from mice expressing nicotinic receptors harboring gain-of-function mutations. Pharmacological Reviews 64 (4): 869–879. https://doi.org/10.1124/pr.111.004671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, M.F., W.L. Lin, and Y.C. Ma. 2005. A study of reactive oxygen species in mainstream of cigarette. Indoor Air 15 (2): 135–140. https://doi.org/10.1111/j.1600-0668.2005.00330.x.

    Article  CAS  PubMed  Google Scholar 

  12. Biselli, P.J., F.D. Lopes, H.T. Moriya, D.H. Rivero, A.C. Toledo, P.H. Saldiva, T. Mauad, and M.A. Martins. 2011. Short-term exposure of mice to cigarette smoke and/or residual oil fly ash produces proximal airspace enlargements and airway epithelium remodeling. Brazilian Journal of Medical and Biological Research 44 (5): 460–468. https://doi.org/10.1590/S0100-879X2011007500040.

    Article  CAS  PubMed  Google Scholar 

  13. Hizume, D.C., A.C. Toledo, H.T. Moriya, B.M. Saraiva-Romanholo, F.M. Almeida, F.M. Arantes-Costa, R.P. Vieira, M. Dolhnikoff, D.I. Kasahara, and M.A. Martins. 2012. Cigarette smoke dissociates inflammation and lung remodeling in OVA-sensitized and challenged mice. Respiratory Physiology & Neurobiology 181 (2): 167–176. https://doi.org/10.1016/j.resp.2012.03.005.

    Article  CAS  Google Scholar 

  14. Toledo, A.C., R.M. Magalhaes, D.C. Hizume, R.P. Vieira, P.J. Biselli, H.T. Moriya, T. Mauad, F.D. Lopes, and M.A. Martins. 2012. Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke. European Respiratory Journal 39 (2): 254–264. https://doi.org/10.1183/09031936.00003411.

    Article  CAS  PubMed  Google Scholar 

  15. Matulonga, B., M. Rava, V. Siroux, A. Bernard, O. Dumas, I. Pin, J.P. Zock, R. Nadif, B. Leynaert, and N. Le Moual. 2016. Women using bleach for home cleaning are at increased risk of non-allergic asthma. Respiratory Medicine 117: 264–271. https://doi.org/10.1016/j.rmed.2016.06.019.

    Article  PubMed  Google Scholar 

  16. Svanes, O., R.J. Bertelsen, S.H.L. Lygre, A.E. Carsin, J.M. Anto, B. Forsberg, J.M. Garcia-Garcia, et al. 2018. Cleaning at home and at work in relation to lung function decline and airway obstruction. American Journal of Respiratory and Critical Care Medicine 197 (9): 1157–1163. https://doi.org/10.1164/rccm.201706-1311OC.

    Article  PubMed  Google Scholar 

  17. Dao, A., and D.I. Bernstein. 2018. Occupational exposure and asthma. Annals of Allergy, Asthma & Immunology 120 (5): 468–475. https://doi.org/10.1016/j.anai.2018.03.026.

    Article  Google Scholar 

  18. Folletti, I., A. Siracusa, and G. Paolocci. 2017. Update on asthma and cleaning agents. Current opinion in Allergy and Clinical Immunology 17 (2): 90–95. https://doi.org/10.1097/ACI.0000000000000349.

    Article  CAS  PubMed  Google Scholar 

  19. Hox, V., B. Steelant, W. Fokkens, B. Nemery, and P.W. Hellings. 2014. Occupational upper airway disease: How work affects the nose. Allergy 69 (3): 282–291. https://doi.org/10.1111/all.12347.

    Article  CAS  PubMed  Google Scholar 

  20. Lau, A., and S.M. Tarlo. 2019. Update on the management of occupational asthma and work-exacerbated asthma. Allergy, Asthma & Immunology Research 11 (2): 188–200. https://doi.org/10.4168/aair.2019.11.2.188.

    Article  Google Scholar 

  21. Perlman, D.M., and L.A. Maier. 2019. Occupational Lung Disease. Medical Clinics of North America 103 (3): 535–548. https://doi.org/10.1016/j.mcna.2018.12.012.

    Article  PubMed  Google Scholar 

  22. Weisel, C.P., S.D. Richardson, B. Nemery, G. Aggazzotti, E. Baraldi, E.R. Blatchley 3rd., B.C. Blount, et al. 2009. Childhood asthma and environmental exposures at swimming pools: State of the science and research recommendations. Environmental Health Perspectives 117 (4): 500–507. https://doi.org/10.1289/ehp.11513.

    Article  CAS  PubMed  Google Scholar 

  23. Evans, R.B. 2005. Chlorine: State of the art. Lung 183 (3): 151–167. https://doi.org/10.1007/s00408-004-2530-3.

    Article  CAS  PubMed  Google Scholar 

  24. Hox, V., J.A. Vanoirbeek, I. Callebaut, S. Bobic, V. De Vooght, J. Ceuppens, P. Hoet, B. Nemery, and P.W. Hellings. 2011. Airway exposure to hypochlorite prior to ovalbumin induces airway hyperreactivity without evidence for allergic sensitization. Toxicology Letters 204 (2–3): 101–107. https://doi.org/10.1016/j.toxlet.2011.04.017.

    Article  CAS  PubMed  Google Scholar 

  25. Winder, C. 2001. The toxicology of chlorine. Environmental Research 85 (2): 105–114. https://doi.org/10.1006/enrs.2000.4110.

    Article  CAS  PubMed  Google Scholar 

  26. Carlisle, M., A. Lam, E.R. Svendsen, S. Aggarwal, and S. Matalon. 2016. Chlorine-induced cardiopulmonary injury. Annals of the New York Academy of Sciences 1374 (1): 159–167. https://doi.org/10.1111/nyas.13091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gilmour, M.I., M.S. Jaakkola, S.J. London, A.E. Nel, and C.A. Rogers. 2006. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environmental Health Perspectives 114 (4): 627–633.

    Article  CAS  Google Scholar 

  28. Liang, G.B., and Z.H. He. 2019. Animal models of emphysema. Chinese Medical Journal (Engl) 132 (20): 2465–2475. https://doi.org/10.1097/CM9.0000000000000469.

    Article  CAS  Google Scholar 

  29. Thomson, N.C., R. Chaudhuri, and E. Livingston. 2004. Asthma and cigarette smoking. European Respiratory Journal 24 (5): 822–833. https://doi.org/10.1183/09031936.04.00039004.

    Article  CAS  PubMed  Google Scholar 

  30. Gilliland, F.D., T. Islam, K. Berhane, W.J. Gauderman, R. McConnell, E. Avol, and J.M. Peters. 2006. Regular smoking and asthma incidence in adolescents. American Journal of Respiratory and Critical Care Medicine 174 (10): 1094–1100. https://doi.org/10.1164/rccm.200605-722OC.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kumar, R. 2008. Prenatal factors and the development of asthma. Current Opinion in Pediatrics 20 (6): 682–687. https://doi.org/10.1097/MOP.0b013e3283154f26.

    Article  PubMed  Google Scholar 

  32. Hoyle, G.W., and E.R. Svendsen. 2016. Persistent effects of chlorine inhalation on respiratory health. Annals of the New York Academy of Sciences 1378 (1): 33–40. https://doi.org/10.1111/nyas.13139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yadav, A.K., A. Bracher, S.F. Doran, M. Leustik, G.L. Squadrito, E.M. Postlethwait, and S. Matalon. 2010. Mechanisms and modification of chlorine-induced lung injury in animals. Proceedings of the American Thoracic Society 7 (4): 278–283. https://doi.org/10.1513/pats.201001-009SM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuntz, B., L.E. Kroll, J. Hoebel, M. Schumann, J. Zeiher, A. Starker, and T. Lampert. 2018. Time trends of occupational differences in smoking behaviour of employed men and women in Germany: Results of the 1999–2013 microcensus. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 61 (11): 1388–1398. https://doi.org/10.1007/s00103-018-2818-8.

    Article  PubMed  Google Scholar 

  35. Syamlal, G., B.A. King, and J.M. Mazurek. 2017. Tobacco use among working adults - United States, 2014–2016. MMWR. Morbidity and Mortality Weekly Report 66 (42): 1130–1135. https://doi.org/10.15585/mmwr.mm6642a2.

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Genaro, I.S., F.M. de Almeida, D.C. Hizume-Kunzler, H.T. Moriya, R.A. Silva, J.C.G. Cruz, R.B. Lopes, et al. 2018. Low dose of chlorine exposure exacerbates nasal and pulmonary allergic inflammation in mice. Science and Reports 8 (1): 12636. https://doi.org/10.1038/s41598-018-30851-6.

    Article  CAS  Google Scholar 

  37. Brasil. 2008. Lei Arouca - nº 11.794. In art. 225 da Constituição Federal.

  38. Lopes, F.D., A.C. Toledo, C.R. Olivo, C.M. Prado, E.A. Leick, M.C. Medeiros, A.B. Santos, A. Garippo, M.A. Martins, and T. Mauad. 2013. A comparative study of extracellular matrix remodeling in two murine models of emphysema. Histology and Histopathology 28 (2): 269–276. https://doi.org/10.14670/HH-28.269.

    Article  CAS  PubMed  Google Scholar 

  39. Santana, F.P.R., N.M. Pinheiro, M.I. Bittencourt-Mernak, A. Perini, K. Yoshizaki, M. Macchione, P.H.N. Saldiva, et al. 2019. Vesicular acetylcholine transport deficiency potentiates some inflammatory responses induced by diesel exhaust particles. Ecotoxicology and Environmental Safety 167: 494–504. https://doi.org/10.1016/j.ecoenv.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  40. Hantos, Z., A. Adamicza, E. Govaerts, and B. Daroczy. 1992. Mechanical impedances of lungs and chest wall in the cat. Journal of Applied Physiology (1985) 73 (2):427–433. https://doi.org/10.1152/jappl.1992.73.2.427.

  41. Prado, C.M., R.F. Righetti, E.A. Fdtqds Lopes, F.M. Leick, F.M. de Arantes-Costa, P.H.N. Almeida, T. Mauad. Saldiva, Iflc Tiberio, and M.A. Martins. 2019. iNOS inhibition reduces lung mechanical alterations and remodeling induced by particulate matter in mice. Pulm Med 2019: 4781528. https://doi.org/10.1155/2019/4781528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weibel, E.R., G.S. Kistler, and W.F. Scherle. 1966. Practical stereological methods for morphometric cytology. Journal of Cell Biology 30 (1): 23–38.

    Article  CAS  Google Scholar 

  43. Margraf, L.R., J.F. Tomashefski Jr., M.C. Bruce, and B.B. Dahms. 1991. Morphometric analysis of the lung in bronchopulmonary dysplasia. The American Review of Respiratory Disease 143 (2): 391–400. https://doi.org/10.1164/ajrccm/143.2.391.

    Article  CAS  PubMed  Google Scholar 

  44. Robertoni, F.S., C.R. Olivo, J.D. Lourenco, N.G. Goncalves, A.P. Velosa, C.J. Lin, C.M. Flo, et al. 2015. Collagenase mRNA overexpression and decreased extracellular matrix components are early events in the pathogenesis of emphysema. PLoS ONE 10 (6): e0129590. https://doi.org/10.1371/journal.pone.0129590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones, R., and L. Reid. 1978. Secretory cell hyperplasia and modification of intracellular glycoprotein in rat airways induced by short periods of exposure to tobacco smoke, and the effect of the antiinflammatory agent phenylmethyloxadiazole. Laboratory Investigation 39 (1): 41–49.

    CAS  PubMed  Google Scholar 

  46. Arantes-Costa, F.M., F.D. Lopes, A.C. Toledo, P.A. Magliarelli-Filho, H.T. Moriya, R. Carvalho-Oliveira, T. Mauad, P.H. Saldiva, and M.A. Martins. 2008. Effects of residual oil fly ash (ROFA) in mice with chronic allergic pulmonary inflammation. Toxicologic Pathology 36 (5): 680–686. https://doi.org/10.1177/0192623308317427.

    Article  PubMed  Google Scholar 

  47. Silva, R.A., F.M. Almeida, C.R. Olivo, B.M. Saraiva-Romanholo, M.A. Martins, and C.R. Carvalho. 2015. Airway remodeling is reversed by aerobic training in a murine model of chronic asthma. Scandinavian Journal of Medicine and Science in Sports 25 (3): e258-266. https://doi.org/10.1111/sms.12311.

    Article  CAS  PubMed  Google Scholar 

  48. Labrecque, M. 2012. Irritant-induced asthma. Current opinion in Allergy and Clinical Immunology 12 (2): 140–144. https://doi.org/10.1097/ACI.0b013e32835143b8.

    Article  CAS  PubMed  Google Scholar 

  49. Malo, J.L., J. L’Archeveque, L. Castellanos, K. Lavoie, H. Ghezzo, and K. Maghni. 2009. Long-term outcomes of acute irritant-induced asthma. American Journal of Respiratory and Critical Care Medicine 179 (10): 923–928. https://doi.org/10.1164/rccm.200810-1550OC.

    Article  CAS  PubMed  Google Scholar 

  50. Tarlo, S.M., and C. Lemiere. 2014. Occupational asthma. New England Journal of Medicine 370 (7): 640–649. https://doi.org/10.1056/NEJMra1301758.

    Article  CAS  PubMed  Google Scholar 

  51. Hiemstra, P.S., P.B. McCray Jr., and R. Bals. 2015. The innate immune function of airway epithelial cells in inflammatory lung disease. European Respiratory Journal 45 (4): 1150–1162. https://doi.org/10.1183/09031936.00141514.

    Article  CAS  PubMed  Google Scholar 

  52. Wittekindt, O.H. 2017. Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Archiv. European Journal of Physiology 469 (1): 135–147. https://doi.org/10.1007/s00424-016-1917-3.

    Article  CAS  PubMed  Google Scholar 

  53. Strzelak, A., A. Ratajczak, A. Adamiec, and W. Feleszko. 2018. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: a mechanistic review. International Journal of Environmental Research Public Health 15 (5). https://doi.org/10.3390/ijerph15051033.

  54. Jia, J., T.M. Conlon, C. Ballester Lopez, M. Seimetz, M. Bednorz, Z. Zhou-Suckow, N. Weissmann, O. Eickelberg, M.A. Mall, and A.O. Yildirim. 2016. Cigarette smoke causes acute airway disease and exacerbates chronic obstructive lung disease in neonatal mice. American Journal of Physiology. Lung Cellular and Molecular Physiology 311 (3): L602-610. https://doi.org/10.1152/ajplung.00124.2016.

    Article  PubMed  Google Scholar 

  55. Kim, D.Y., E.Y. Kwon, G.U. Hong, Y.S. Lee, S.H. Lee, and J.Y. Ro. 2011. Cigarette smoke exacerbates mouse allergic asthma through Smad proteins expressed in mast cells. Respiratory Research 12: 49. https://doi.org/10.1186/1465-9921-12-49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jendzjowsky, N.G., A. Roy, N.O. Barioni, M.M. Kelly, F.H.Y. Green, C.N. Wyatt, R.L. Pye, L. Tenorio-Lopes, and R.J.A. Wilson. 2018. Preventing acute asthmatic symptoms by targeting a neuronal mechanism involving carotid body lysophosphatidic acid receptors. Nature Communications 9 (1): 4030. https://doi.org/10.1038/s41467-018-06189-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Steinritz, D., B. Stenger, A. Dietrich, T. Gudermann, and T. Popp. 2018. TRPs in tox: involvement of transient receptor potential-channels in chemical-induced organ toxicity-a structured review. Cells 7 (8). https://doi.org/10.3390/cells7080098.

  58. Hox, V., J.A. Vanoirbeek, Y.A. Alpizar, S. Voedisch, I. Callebaut, S. Bobic, A. Sharify, et al. 2013. Crucial role of transient receptor potential ankyrin 1 and mast cells in induction of nonallergic airway hyperreactivity in mice. American Journal of Respiratory and Critical Care Medicine 187 (5): 486–493. https://doi.org/10.1164/rccm.201208-1358OC.

    Article  CAS  PubMed  Google Scholar 

  59. Tuck, S.A., D. Ramos-Barbon, H. Campbell, T. McGovern, H. Karmouty-Quintana, and J.G. Martin. 2008. Time course of airway remodelling after an acute chlorine gas exposure in mice. Respiratory Research 9: 61. https://doi.org/10.1186/1465-9921-9-61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Massa, C.B., P. Scott, E. Abramova, C. Gardner, D.L. Laskin, and A.J. Gow. 2014. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction. Toxicology and Applied Pharmacology 278 (1): 53–64. https://doi.org/10.1016/j.taap.2014.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Elliot, J.G., P.B. Noble, T. Mauad, T.R. Bai, M.J. Abramson, K.O. McKay, F.H.Y. Green, and A.L. James. 2018. Inflammation-dependent and independent airway remodelling in asthma. Respirology 23 (12): 1138–1145. https://doi.org/10.1111/resp.13360.

    Article  PubMed  Google Scholar 

  62. Ito, J. T., J. D. Lourenco, R. F. Righetti, Iflc Tiberio, C. M. Prado, and Fdtqs Lopes. 2019. Extracellular matrix component remodeling in respiratory diseases: what has been found in clinical and experimental studies? Cells 8 (4). https://doi.org/10.3390/cells8040342.

  63. Al-Muhsen, S., J. R. Johnson, and Q. Hamid. 2011. Remodeling in asthma. Journal of Allergy and Clinical Immunology 128 (3):451–462; quiz 463–454. https://doi.org/10.1016/j.jaci.2011.04.047.

  64. Lourenco, J.D., J.T. Ito, D.A.B. Cervilha, D.S. Sales, A. Riani, C.L. Suehiro, I.S. Genaro, et al. 2018. The tick-derived rBmTI-A protease inhibitor attenuates the histological and functional changes induced by cigarette smoke exposure. Histology and Histopathology 33 (3): 289–298. https://doi.org/10.14670/HH-11-927.

    Article  CAS  PubMed  Google Scholar 

  65. Beeh, K.M., J. Beier, O. Kornmann, and R. Buhl. 2003. Sputum matrix metalloproteinase-9, tissue inhibitor of metalloprotinease-1, and their molar ratio in patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects. Respiratory Medicine 97 (6): 634–639.

    Article  CAS  Google Scholar 

  66. Gueders, M.M., J.M. Foidart, A. Noel, and D.D. Cataldo. 2006. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: Potential implications in asthma and other lung diseases. European Journal of Pharmacology 533 (1–3): 133–144. https://doi.org/10.1016/j.ejphar.2005.12.082.

    Article  CAS  PubMed  Google Scholar 

  67. Crosby, L.M., and C.M. Waters. 2010. Epithelial repair mechanisms in the lung. American Journal of Physiology. Lung Cellular and Molecular Physiology 298 (6): L715-731. https://doi.org/10.1152/ajplung.00361.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tan, R.J., C.L. Fattman, L.M. Niehouse, J.M. Tobolewski, L.E. Hanford, Q. Li, F.A. Monzon, W.C. Parks, and T.D. Oury. 2006. Matrix metalloproteinases promote inflammation and fibrosis in asbestos-induced lung injury in mice. American Journal of Respiratory Cell and Molecular Biology 35 (3): 289–297. https://doi.org/10.1165/rcmb.2005-0471OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chelladurai, P., W. Seeger, and S.S. Pullamsetti. 2012. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. European Respiratory Journal 40 (3): 766–782. https://doi.org/10.1183/09031936.00209911.

    Article  CAS  PubMed  Google Scholar 

  70. Camargo, L.D.N., R.F. Righetti, T.M. Dos Lrcrb Aristoteles, F.C.R. de Santos, S. Souza, M.M. Fukuzaki, Cruz, et al. 2017. Effects of anti-IL-17 on inflammation, remodeling, and oxidative stress in an experimental model of asthma exacerbated by LPS. Frontiers in Immunology 8: 1835. https://doi.org/10.3389/fimmu.2017.01835.

    Article  CAS  PubMed  Google Scholar 

  71. Hendrix, A.Y., and F. Kheradmand. 2017. The role of matrix metalloproteinases in development, repair, and destruction of the lungs. Progress in Molecular Biology and Translational Science 148: 1–29. https://doi.org/10.1016/bs.pmbts.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  72. Antosova, M., D. Mokra, L. Pepucha, J. Plevkova, T. Buday, M. Sterusky, and A. Bencova. 2017. Physiology of nitric oxide in the respiratory system. Physiol Res 66 (Supplementum 2):S159-S172.

  73. Prado, C.M., E.A. Leick-Maldonado, L. Yano, A.S. Leme, V.L. Capelozzi, M.A. Martins, and I.F. Tiberio. 2006. Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling. American Journal of Respiratory Cell and Molecular Biology 35 (4): 457–465. https://doi.org/10.1165/rcmb.2005-0391OC.

    Article  CAS  PubMed  Google Scholar 

  74. Marques, R.H., F.G. Reis, C.M. Starling, C. Cabido, R. de Almeida-Reis, M. Dohlnikoff, C.M. Prado, E.A. Leick, M.A. Martins, and I.F. Tiberio. 2012. Inducible nitric oxide synthase inhibition attenuates physical stress-induced lung hyper-responsiveness and oxidative stress in animals with lung inflammation. Neuroimmunomodulation 19 (3): 158–170. https://doi.org/10.1159/000331264.

    Article  CAS  PubMed  Google Scholar 

  75. Prado, C.M., L. Yano, G. Rocha, C.M. Starling, V.L. Capelozzi, E.A. Leick-Maldonado, A. Martins Mde, and I.F. Tiberio. 2011. Effects of inducible nitric oxide synthase inhibition in bronchial vascular remodeling-induced by chronic allergic pulmonary inflammation. Experimental Lung Research 37 (5): 259–268. https://doi.org/10.3109/01902148.2010.538289.

    Article  CAS  PubMed  Google Scholar 

  76. Lind, M., A. Hayes, M. Caprnda, D. Petrovic, L. Rodrigo, P. Kruzliak, and A. Zulli. 2017. Inducible nitric oxide synthase: Good or bad? Biomedicine & Pharmacotherapy 93: 370–375. https://doi.org/10.1016/j.biopha.2017.06.036.

    Article  CAS  Google Scholar 

  77. Churg, A., S. Zhou, and J.L. Wright. 2012. Series “matrix metalloproteinases in lung health and disease”: Matrix metalloproteinases in COPD. European Respiratory Journal 39 (1): 197–209. https://doi.org/10.1183/09031936.00121611.

    Article  CAS  PubMed  Google Scholar 

  78. Ma, P., K. Yu, J. Yu, W. Wang, Y. Ding, C. Chen, X. Chen, et al. 2016. Effects of nicotine and vagus nerve in severe acute pancreatitis-associated lung injury in rats. Pancreas 45 (4): 552–560. https://doi.org/10.1097/MPA.0000000000000575.

    Article  CAS  PubMed  Google Scholar 

  79. Pinheiro, N.M., F.P. Santana, R.R. Almeida, M. Guerreiro, M.A. Martins, L.C. Caperuto, N.O. Camara, et al. 2017. Acute lung injury is reduced by the alpha7nAChR agonist PNU-282987 through changes in the macrophage profile. The FASEB Journal 31 (1): 320–332. https://doi.org/10.1096/fj.201600431R.

    Article  CAS  PubMed  Google Scholar 

  80. Ni, Y.F., F. Tian, Z.F. Lu, G.D. Yang, H.Y. Fu, J. Wang, X.L. Yan, Y.C. Zhao, Y.J. Wang, and T. Jiang. 2011. Protective effect of nicotine on lipopolysaccharide-induced acute lung injury in mice. Respiration 81 (1): 39–46. https://doi.org/10.1159/000319151.

    Article  CAS  PubMed  Google Scholar 

  81. Sharma, P., L. Dudus, P.A. Nielsen, H. Clausen, J.R. Yankaskas, M.A. Hollingsworth, and J.F. Engelhardt. 1998. MUC5B and MUC7 are differentially expressed in mucous and serous cells of submucosal glands in human bronchial airways. American Journal of Respiratory Cell and Molecular Biology 19 (1): 30–37. https://doi.org/10.1165/ajrcmb.19.1.3054.

    Article  CAS  PubMed  Google Scholar 

  82. Wickstrom, C., J.R. Davies, G.V. Eriksen, E.C. Veerman, and I. Carlstedt. 1998. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: Identification of glycoforms and C-terminal cleavage. The Biochemical Journal 334 (Pt 3): 685–693. https://doi.org/10.1042/bj3340685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hovenberg, H.W., J.R. Davies, and I. Carlstedt. 1996. Different mucins are produced by the surface epithelium and the submucosa in human trachea: Identification of MUC5AC as a major mucin from the goblet cells. The Biochemical Journal 318 (Pt 1): 319–324. https://doi.org/10.1042/bj3180319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gray, T., R. Coakley, A. Hirsh, D. Thornton, S. Kirkham, J.S. Koo, L. Burch, R. Boucher, and P. Nettesheim. 2004. Regulation of MUC5AC mucin secretion and airway surface liquid metabolism by IL-1beta in human bronchial epithelia. American Journal of Physiology. Lung Cellular and Molecular Physiology 286 (2): L320-330. https://doi.org/10.1152/ajplung.00440.2002.

    Article  CAS  PubMed  Google Scholar 

  85. Groneberg, D.A., P.R. Eynott, T. Oates, S. Lim, R. Wu, I. Carlstedt, A.G. Nicholson, and K.F. Chung. 2002. Expression of MUC5AC and MUC5B mucins in normal and cystic fibrosis lung. Respiratory Medicine 96 (2): 81–86. https://doi.org/10.1053/rmed.2001.1221.

    Article  CAS  PubMed  Google Scholar 

  86. Shao, M.X., T. Nakanaga, and J.A. Nadel. 2004. Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alpha-converting enzyme in human airway epithelial (NCI-H292) cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 287 (2): L420-427. https://doi.org/10.1152/ajplung.00019.2004.

    Article  CAS  PubMed  Google Scholar 

  87. Young, H.W., O.W. Williams, D. Chandra, L.K. Bellinghausen, G. Perez, A. Suarez, M.J. Tuvim, et al. 2007. Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5’ elements. American Journal of Respiratory Cell and Molecular Biology 37 (3): 273–290. https://doi.org/10.1165/rcmb.2005-0460OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ehre, C., E.N. Worthington, R.M. Liesman, B.R. Grubb, D. Barbier, W.K. O’Neal, J.M. Sallenave, R.J. Pickles, and R.C. Boucher. 2012. Overexpressing mouse model demonstrates the protective role of Muc5ac in the lungs. Proc Natl Acad Sci U S A 109 (41): 16528–16533. https://doi.org/10.1073/pnas.1206552109.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Sao Paulo Research Foundation (FAPESP) (grant numbers 2009/53904–9 and 2018/06088–0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001, National Council for Technologic and Scientific Development (CNPq) (grant number 306278/2015–4), Experimental Therapeutic Laboratory I (LIM 20), School of Medicine, University of Sao Paulo, and School of Medicine Foundation (FFM/USP).

Author information

Authors and Affiliations

Authors

Contributions

B.M.S.R.: conceptualization, methodology, investigation, writing — original draft, visualization. I.S.G.: methodology, investigation, formal analysis, writing — original draft, visualization. F.M.A.: methodology, investigation, writing — review and editing. S.N.F.: investigation, writing — review and editing. M.R.C.L.: investigation, writing — review and editing. T.S.A.: investigation, writing — review and editing. R.P.V.: methodology, investigation, writing — review and editing. F.M.A.C.: conceptualization, methodology, formal analysis. M.A.M.: conceptualization, resources, supervision, funding acquisition. I.F.L.C.T.: formal analysis, resources, writing — review and editing, Supervision. C.M.P.: formal analysis, resources, writing — original draft, writing — review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Beatriz Mangueira Saraiva-Romanholo.

Ethics declarations

Ethics Approval

This study was submitted and approved by the Review Board for Human and Animal Studies (CEUA) at the University City of Sao Paulo (UNICID) (no. 001/2013) and by Federal University of São Paulo (UNIFESP) no. 2414071117.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read and approved the manuscript in its final form and concur with the submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraiva-Romanholo, B.M., de Genaro, I.S., de Almeida, F.M. et al. Exposure to Sodium Hypochlorite or Cigarette Smoke Induces Lung Injury and Mechanical Impairment in Wistar Rats. Inflammation 45, 1464–1483 (2022). https://doi.org/10.1007/s10753-022-01625-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01625-0

KEY WORDS

Navigation