Bodine, S.C. 2020. Edward F. Adolph Distinguished Lecture. Skeletal muscle atrophy: Multiple pathways leading to a common outcome. Journal of Applied Physiology 129: 272–282. https://doi.org/10.1152/japplphysiol.00381.2020.
CAS
Article
PubMed
PubMed Central
Google Scholar
Frost, R.A., and C.H. Lang. 2008. Regulation of Muscle growth by pathogen-associated molecules. Journal of Animal Science 86: E84-93. https://doi.org/10.2527/jas.2007-0483.
CAS
Article
PubMed
Google Scholar
Kimball, S.R., and C.H. Lang. 2018. Mechanisms Underlying Muscle Protein Imbalance Induced by Alcohol. Annual Review of Nutrition 38: 197–217. https://doi.org/10.1146/annurev-nutr-071816-064642.
CAS
Article
PubMed
PubMed Central
Google Scholar
Glass, D.J. 2010. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Current Topics in Microbiology and Immunology 346: 267–278. https://doi.org/10.1007/82_2010_78.
CAS
Article
PubMed
Google Scholar
Kobayashi, M., S. Kasamatsu, S. Shinozaki, S. Yasuhara, and M. Kaneki. 2021. Myostatin deficiency not only prevents muscle wasting but also improves survival in septic mice. American Journal of Physiology. Endocrinology and Metabolism 320: E150–E159. https://doi.org/10.1152/ajpendo.00161.2020.
CAS
Article
PubMed
Google Scholar
Bay, M.L., and B.K. Pedersen. 2020. Muscle-Organ Crosstalk: Focus on Immunometabolism. Frontiers in Physiology 11: 567881. https://doi.org/10.3389/fphys.2020.567881.
Article
PubMed
PubMed Central
Google Scholar
Pedersen, B.K., and M.A. Febbraio. 2012. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nature reviews. Endocrinology 8: 457–465. https://doi.org/10.1038/nrendo.2012.49.
CAS
Article
PubMed
Google Scholar
Afzali, A.M., T. Muntefering, H. Wiendl, S.G. Meuth, and T. Ruck. 2018. Skeletal muscle cells actively shape (auto)immune responses. Autoimmunity Reviews 17: 518–529. https://doi.org/10.1016/j.autrev.2017.12.005.
CAS
Article
PubMed
Google Scholar
Frost, R.A., G.J. Nystrom, and C.H. Lang. 2006. Multiple Toll-like receptor ligands induce an IL-6 transcriptional response in skeletal myocytes. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 290: R773-784. https://doi.org/10.1152/ajpregu.00490.2005.
CAS
Article
PubMed
Google Scholar
Ono, Y., and K. Sakamoto. 2017. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-kappaB signaling pathway and myoblast-derived tumor necrosis factor-alpha. PLoS One 12: e0182040. https://doi.org/10.1371/journal.pone.0182040.
CAS
Article
PubMed
PubMed Central
Google Scholar
Frisard, M.I., Y. Wu, R.P. McMillan, K.A. Voelker, K.A. Wahlberg, A.S. Anderson, N. Boutagy, K. Resendes, E. Ravussin, and M.W. Hulver. 2015. Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle. Metabolism: Clinical and Experimental 64: 416–427. https://doi.org/10.1016/j.metabol.2014.11.007.
CAS
Article
Google Scholar
Jackson, E.E., E. Rendina-Ruedy, B.J. Smith, and V.A. Lacombe. 2015. Loss of toll-like receptor 4 function partially protects against peripheral and cardiac glucose metabolic derangements during a long-term high-fat diet. PLoS One 10: e0142077. https://doi.org/10.1371/journal.pone.0142077.
CAS
Article
PubMed
PubMed Central
Google Scholar
Doyle, A., G. Zhang, E.A. Abdel Fattah, N.T. Eissa, and Y.P. Li. 2011. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB Journal 25: 99–110. https://doi.org/10.1096/fj.10-164152.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang, G., Z. Liu, H. Ding, H. Miao, J.M. Garcia, and Y.P. Li. 2017. Toll-like receptor 4 mediates Lewis lung carcinoma-induced muscle wasting via coordinate activation of protein degradation pathways. Scientific Reports 7: 2273. https://doi.org/10.1038/s41598-017-02347-2.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ono, Y., Y. Maejima, M. Saito, K. Sakamoto, S. Horita, K. Shimomura, S. Inoue, and J. Kotani. 2020. TAK-242, a specific inhibitor of Toll-like receptor 4 signalling, prevents endotoxemia-induced skeletal muscle wasting in mice. Scientific Reports 10: 694. https://doi.org/10.1038/s41598-020-57714-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Frost, R.A., E. Pereyra, and C.H. Lang. 2011. Ethyl pyruvate preserves IGF-I sensitivity toward mTOR substrates and protein synthesis in C2C12 myotubes. Endocrinology 152: 151–163. https://doi.org/10.1210/en.2010-0248.
CAS
Article
PubMed
Google Scholar
Ghosh, S., R. Lertwattanarak, J. Garduno Jde, J.J. Galeana, J. Li, F. Zamarripa, J.L. Lancaster, S. Mohan, S. Hussey, and N. Musi. 2015. Elevated muscle TLR4 expression and metabolic endotoxemia in human aging. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 70: 232–246. https://doi.org/10.1093/gerona/glu067.
CAS
Article
Google Scholar
Reyna, S.M., S. Ghosh, P. Tantiwong, C.S. Meka, P. Eagan, C.P. Jenkinson, E. Cersosimo, R.A. Defronzo, D.K. Coletta, A. Sriwijitkamol, et al. 2008. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 57: 2595–2602. https://doi.org/10.2337/db08-0038.
CAS
Article
PubMed
PubMed Central
Google Scholar
Drummond, M.J., K.L. Timmerman, M.M. Markofski, D.K. Walker, J.M. Dickinson, M. Jamaluddin, A.R. Brasier, B.B. Rasmussen, and E. Volpi. 2013. Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 305: R216-223. https://doi.org/10.1152/ajpregu.00072.2013.
CAS
Article
PubMed
PubMed Central
Google Scholar
Laitano, O., G.P. Robinson, K.O. Murray, C.K. Garcia, A.J. Mattingly, D. Morse, M.A. King, J.D. Iwaniec, J.M. Alzahrani, and T.L. Clanton. 2021. Skeletal muscle fibers play a functional role in host defense during sepsis in mice. Scientific Reports 11: 7316. https://doi.org/10.1038/s41598-021-86585-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yaffe, D., and O. Saxel. 1977. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270: 725–727. https://doi.org/10.1038/270725a0.
CAS
Article
PubMed
Google Scholar
Blau, H.M., C.P. Chiu, and C. Webster. 1983. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32: 1171–1180. https://doi.org/10.1016/0092-8674(83)90300-8.
CAS
Article
PubMed
Google Scholar
Blau, H.M., G.K. Pavlath, E.C. Hardeman, C.P. Chiu, L. Silberstein, S.G. Webster, S.C. Miller, and C. Webster. 1985. Plasticity of the differentiated state. Science 230: 758–766. https://doi.org/10.1126/science.2414846.
CAS
Article
PubMed
Google Scholar
Sharples, A.P., N. Al-Shanti, and C.E. Stewart. 2010. C2 and C2C12 murine skeletal myoblast models of atrophic and hypertrophic potential: Relevance to disease and ageing? Journal of Cellular Physiology 225: 240–250. https://doi.org/10.1002/jcp.22252.
CAS
Article
PubMed
Google Scholar
McMahon, D.K., P.A. Anderson, R. Nassar, J.B. Bunting, Z. Saba, A.E. Oakeley, and N.N. Malouf. 1994. C2C12 cells: Biophysical, biochemical, and immunocytochemical properties. The American Journal of Physiology 266: C1795-1802. https://doi.org/10.1152/ajpcell.1994.266.6.C1795.
CAS
Article
PubMed
Google Scholar
Frost, R.A., G.J. Nystrom, and C.H. Lang. 2009. Endotoxin and interferon-gamma inhibit translation in skeletal muscle cells by stimulating nitric oxide synthase activity. Shock 32: 416–426. https://doi.org/10.1097/SHK.0b013e3181a034d2.
CAS
Article
PubMed
PubMed Central
Google Scholar
Frost, R.A., G.J. Nystrom, and C.H. Lang. 2004. Lipopolysaccharide stimulates nitric oxide synthase-2 expression in murine skeletal muscle and C(2)C(12) myoblasts via Toll-like receptor-4 and c-Jun NH(2)-terminal kinase pathways. American Journal of Physiology. Cell Physiology 287: C1605-1615. https://doi.org/10.1152/ajpcell.00010.2004.
CAS
Article
PubMed
Google Scholar
Pilon, G., A. Charbonneau, P.J. White, P. Dallaire, M. Perreault, S. Kapur, and A. Marette. 2010. Endotoxin mediated-iNOS induction causes insulin resistance via ONOO(-) induced tyrosine nitration of IRS-1 in skeletal muscle. PLoS One 5: e15912. https://doi.org/10.1371/journal.pone.0015912.
CAS
Article
PubMed
PubMed Central
Google Scholar
Blobel, G., and D. Sabatini. 1971. Dissociation of mammalian polyribosomes into subunits by puromycin. Proceedings of the National Academy of Sciences of the United States of America 68: 390–394. https://doi.org/10.1073/pnas.68.2.390.
CAS
Article
PubMed
PubMed Central
Google Scholar
Aviner, R., T. Geiger, and O. Elroy-Stein. 2013. Novel proteomic approach (PUNCH-P) reveals cell cycle-specific fluctuations in mRNA translation. Genes & Development 27: 1834–1844. https://doi.org/10.1101/gad.219105.113.
CAS
Article
Google Scholar
Aviner, R., T. Geiger, and O. Elroy-Stein. 2013. PUNCH-P for global translatome profiling: Methodology, insights and comparison to other techniques. Translation 1: e27516. https://doi.org/10.4161/trla.27516.
Article
PubMed
PubMed Central
Google Scholar
Kraus, W.L. 2015. Editorial: Would You Like A Hypothesis With Those Data? Omics and the Age of Discovery Science. Molecular Endocrinology 29: 1531–1534. https://doi.org/10.1210/me.2015-1253.
CAS
Article
PubMed
PubMed Central
Google Scholar
Aviner, R., T. Geiger, and O. Elroy-Stein. 2014. Genome-wide identification and quantification of protein synthesis in cultured cells and whole tissues by puromycin-associated nascent chain proteomics (PUNCH-P). Nature Protocols 9: 751–760. https://doi.org/10.1038/nprot.2014.051.
CAS
Article
PubMed
Google Scholar
Henderson, A., and J.W. Hershey. 2011. Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 108: 6415–6419. https://doi.org/10.1073/pnas.1008150108.
Article
PubMed
PubMed Central
Google Scholar
Shilov, I.V., S.L. Seymour, A.A. Patel, A. Loboda, W.H. Tang, S.P. Keating, C.L. Hunter, L.M. Nuwaysir, and D.A. Schaeffer. 2007. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Molecular & Cellular Proteomics 6: 1638–1655. https://doi.org/10.1074/mcp.T600050-MCP200.
CAS
Article
Google Scholar
Elias, J.E., and S.P. Gygi. 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods 4: 207–214. https://doi.org/10.1038/nmeth1019.
CAS
Article
PubMed
Google Scholar
Martinez-Bartolome, S., P.A. Binz, and J.P. Albar. 2014. The Minimal Information about a Proteomics Experiment (MIAPE) from the Proteomics Standards Initiative. Methods in Molecular Biology 1072: 765–780. https://doi.org/10.1007/978-1-62703-631-3_53.
CAS
Article
PubMed
Google Scholar
Mi, H., A. Muruganujan, and P.D. Thomas. 2013. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research 41: D377-386. https://doi.org/10.1093/nar/gks1118.
CAS
Article
PubMed
Google Scholar
da Huang, W., B.T. Sherman, and R.A. Lempicki. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4: 44–57. https://doi.org/10.1038/nprot.2008.211.
CAS
Article
Google Scholar
Blake, J.A., C.J. Bult, J.T. Eppig, J.A. Kadin, J.E. Richardson, and G. Mouse Genome Database. 2014. The Mouse Genome Database: Integration of and access to knowledge about the laboratory mouse. Nucleic Acids Research 42: D810-817. https://doi.org/10.1093/nar/gkt1225.
CAS
Article
PubMed
Google Scholar
Deshmukh, A.S., M. Murgia, N. Nagaraj, J.T. Treebak, J. Cox, and M. Mann. 2015. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Molecular & Cellular Proteomics 14: 841–853. https://doi.org/10.1074/mcp.M114.044222.
CAS
Article
Google Scholar
Trost, M., L. English, S. Lemieux, M. Courcelles, M. Desjardins, and P. Thibault. 2009. The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30: 143–154. https://doi.org/10.1016/j.immuni.2008.11.006.
CAS
Article
PubMed
Google Scholar
Leon, I.R., V. Schwammle, O.N. Jensen, and R.R. Sprenger. 2013. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Molecular & Cellular Proteomics 12: 2992–3005. https://doi.org/10.1074/mcp.M112.025585.
CAS
Article
Google Scholar
Hulsen, T., J. de Vlieg, and W. Alkema. 2008. BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9: 488. https://doi.org/10.1186/1471-2164-9-488.
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu, H., R.G. Sadygov, and J.R. Yates 3rd. 2004. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Analytical Chemistry 76: 4193–4201. https://doi.org/10.1021/ac0498563.
CAS
Article
PubMed
Google Scholar
Schwanhausser, B., D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, and M. Selbach. 2011. Global quantification of mammalian gene expression control. Nature 473: 337–342. https://doi.org/10.1038/nature10098.
CAS
Article
PubMed
Google Scholar
Brooksbank, C., M.T. Bergman, R. Apweiler, E. Birney, and J. Thornton. 2014. The European Bioinformatics Institute’s data resources 2014. Nucleic Acids Research 42: D18-25. https://doi.org/10.1093/nar/gkt1206.
CAS
Article
PubMed
Google Scholar
Kuo, T., M.J. Lew, O. Mayba, C.A. Harris, T.P. Speed, and J.C. Wang. 2012. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proceedings of the National Academy of Sciences of the United States of America 109: 11160–11165. https://doi.org/10.1073/pnas.1111334109.
Article
PubMed
PubMed Central
Google Scholar
Mi, H., A. Muruganujan, J.T. Casagrande, and P.D. Thomas. 2013. Large-scale gene function analysis with the PANTHER classification system. Nature Protocols 8: 1551–1566. https://doi.org/10.1038/nprot.2013.092.
CAS
Article
PubMed
PubMed Central
Google Scholar
Downs, K.P., H. Nguyen, A. Dorfleutner, and C. Stehlik. 2020. An overview of the non-canonical inflammasome. Molecular Aspects of M 76: 100924. https://doi.org/10.1016/j.mam.2020.100924.
CAS
Article
Google Scholar
Del Val, M., L.C. Anton, M. Ramos, V. Munoz-Abad, and E. Campos-Sanchez. 2020. Endogenous TAP-independent MHC-I antigen presentation: Not just the ER lumen. Current Opinion in Immunology 64: 9–14. https://doi.org/10.1016/j.coi.2019.12.003.
CAS
Article
PubMed
Google Scholar
Tomar, D., and R. Singh. 2015. TRIM family proteins: Emerging class of RING E3 ligases as regulator of NF-kappaB pathway. Biology of the Cell 107: 22–40. https://doi.org/10.1111/boc.201400046.
CAS
Article
PubMed
Google Scholar
Mohanty, S., T. Han, Y.B. Choi, A. Lavorgna, J. Zhang, and E.W. Harhaj. 2020. The E3/E4 ubiquitin conjugation factor UBE4B interacts with and ubiquitinates the HTLV-1 Tax oncoprotein to promote NF-kappaB activation. PLoS Pathogens 16: e1008504. https://doi.org/10.1371/journal.ppat.1008504.
CAS
Article
PubMed
PubMed Central
Google Scholar
Choi, R.H., A. McConahay, H.W. Jeong, J.L. McClellan, J.P. Hardee, J.A. Carson, M.F. Hirshman, L.J. Goodyear, and H.J. Koh. 2017. Tribbles 3 regulates protein turnover in mouse skeletal muscle. Biochemical and Biophysical Research Communications 493: 1236–1242. https://doi.org/10.1016/j.bbrc.2017.09.134.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fort, P., A.V. Kajava, F. Delsuc, and O. Coux. 2015. Evolution of proteasome regulators in eukaryotes. Genome Biology and Evolution 7: 1363–1379. https://doi.org/10.1093/gbe/evv068.
CAS
Article
PubMed
PubMed Central
Google Scholar
Boyd, J.H., M. Divangahi, L. Yahiaoui, D. Gvozdic, S. Qureshi, and B.J. Petrof. 2006. Toll-like receptors differentially regulate CC and CXC chemokines in skeletal muscle via NF-kappaB and calcineurin. Infection and Immunity 74: 6829–6838. https://doi.org/10.1128/IAI.00286-06.
CAS
Article
PubMed
PubMed Central
Google Scholar
Beiter, T., J. Hudemann, C. Burgstahler, A.M. Niess, and B. Munz. 2018. Effects of extracellular orotic acid on acute contraction-induced adaptation patterns in C2C12 cells. Molecular and Cellular Biochemistry 448: 251–263. https://doi.org/10.1007/s11010-018-3330-z.
CAS
Article
PubMed
Google Scholar
Buchholz, B.M., T.R. Billiar, and A.J. Bauer. 2010. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. American Journal of Physiology. Gastrointestinal and Liver Physiology 299: G531-538. https://doi.org/10.1152/ajpgi.00060.2010.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ziemkiewicz, N., G. Hilliard, N.A. Pullen, and K. Garg. 2021. The role of innate and adaptive Immune Cells in Skeletal Muscle Regeneration. International Journal of Molecular Sciences 22.https://doi.org/10.3390/ijms22063265
Ubaida-Mohien, C., A. Lyashkov, M. Gonzalez-Freire, R. Tharakan, M. Shardell, R. Moaddel, R.D. Semba, C.W. Chia, M. Gorospe, R. Sen, et al. 2019. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. eLife 8. https://doi.org/10.7554/eLife.49874.
Murphy, S., M. Zweyer, M. Henry, P. Meleady, R.R. Mundegar, D. Swandulla, and K. Ohlendieck. 2019. Proteomic analysis of the sarcolemma-enriched fraction from dystrophic mdx-4cv skeletal muscle. Journal of Proteomics 191: 212–227. https://doi.org/10.1016/j.jprot.2018.01.015.
CAS
Article
PubMed
Google Scholar