Skip to main content
Log in

TLR4-IN-C34 Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses via Downregulating TLR4/MyD88/NF-κB/NLRP3 Signaling Pathway and Reducing ROS Generation in BV2 Cells

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

TLR4 signal activated by lipopolysaccharide (LPS) is involved in the pathological process of the central nervous system (CNS) diseases and the suppression of TLR4 signal may become an effective treatment. TLR4-IN-C34, a TLR4 inhibitor, is expected to become a candidate compound with anti-neuroinflammatory response. In the present study, the anti-neuroinflammatory effects and possible mechanism of TLR4-IN-C34 were investigated in BV2 microglia cells stimulated by LPS. The results showed that TLR4-IN-C34 decreased the levels of pro-inflammatory factors and chemokines including NO, TNF-α, IL-1β, IL-6, and MCP-1 in the supernatant of LPS-stimulated BV2 cells. Further research indicated that TLR4-IN-C34 suppressed the expression or phosphorylation levels of inflammatory proteins regarding TLR4/MyD88/NF-κB/NLRP3 signaling pathway. In addition, TLR4-IN-C34 reduced ROS production in BV2 cells after LPS treatment. In conclusion, our findings suggest that anti-neuroinflammatory activity of TLR4-IN-C34 may be interrelated to the inhibition of TLR4/MyD88/NF-κB/NLRP3 signaling pathway and reduction of ROS generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The datasets used or analyzed during the current study are available from the corresponding author.

References

  1. Rahimifard, M., F. Maqbool, S. Moeini-Nodeh, K. Niaz, M. Abdollahi, N. Braidy, S.M. Nabavi, and S.F. Nabavi. 2017. Targeting the TLR4 signaling pathway by polyphenol: A novel therapeutic strategy for neuroinflammation. Ageing research reviews 36: 11–19.

    Article  CAS  Google Scholar 

  2. Wu, P.S., H.Y. Ding, J.H. Yen, S.F. Chen, K.H. Lee, and M.J. Wu. 2018. Anti-inflammatory activity of 8-hydroxydaidzein in LPS-stimulated BV2 microglial cells via activation of Nrf2- antioxidant and attenuation of Akt/NF-KB-inflammatory signaling pathways, as well as inhibition of COX-2 activity. Journal of Agricultural & Food Chemistry 66: 5790–5801.

    Article  CAS  Google Scholar 

  3. Jeong, Y.H., W. Li, Y. Go, and Y.C. Oh. 2019. Atractylodis rhizoma Alba attenuates neuroinflammation in BV2 microglia upon LPS stimulation by inducing HO-1 activity and inhibiting NF-κB and MAPK. International journal of molecular sciences 20: 4015.

    Article  CAS  Google Scholar 

  4. Guo, C., L. Yang, C.X. Wan, Y.Z. Xia, C. Zhang, M.H. Chen, Z.D. Wang, Z.R. Li, X.M. Li, Y.D. Geng, and L.Y. Kong. 2016. Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine 23: 1629–1637.

    Article  CAS  Google Scholar 

  5. Cai, B., K.J. Seong, S.W. Bae, C. Chun, W.J. Kim, and J.Y. Jung. 2018. A synthetic diosgenin primary amine derivative attenuates LPS-stimulated inflammation via inhibition of NF-κB and JNK MAPK signaling in microglial BV2 cells. International immunopharmacology 61: 204–214.

    Article  CAS  Google Scholar 

  6. Ma, S.S., Y.P. Wang, X.K. Zhou, Z. Li, Z.K. Zhang, Y.Y. Wang, T.J. Huang, Y.T. Zhang, J.J. Shi, and F.X. Guan. 2020. MG53 Protects hUC-MSCs against inflammatory damage and synergistically enhances their efficacy in neuroinflammation injured brain through inhibiting NLRP3/caspase-1/IL-1β Axis. ACS Chemical Neuroscience 11: 2590–2601.

    Article  CAS  Google Scholar 

  7. Yang, J., L. Wise, and K.I. Fukuchi. 2020. TLR4 Cross-talk with NLRP3 inflammasome and complement signaling pathways in Alzheimer’s disease. Frontiers in immunology 11: 724.

    Article  CAS  Google Scholar 

  8. Hanisch, U.K., and H. Kettenmann. 2007. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nature neuroscience 10: 1387–1394.

    Article  CAS  Google Scholar 

  9. Yang, S., S. Chu, Q. Ai, Z. Zhang, Y. Gao, M. Lin, Y. Liu, Y. Hu, X. Li, Y. Peng, Y. Pan, Q. He, and N. Chen. 2020. Anti-inflammatory effects of higenamine (Hig) on LPS-activated mouse microglia (BV2) through NF-κB and Nrf2/HO-1 signaling pathways. International Immunopharmacology 85: 106629.

  10. Nguyen, P.L., B.P. Bui, H. Lee, and J. Cho. 2021. A novel 1,8-naphthyridine-2-carboxamide derivative attenuates inflammatory responses and cell migration in LPS-treated BV2 cells via the suppression of ROS generation and TLR4/Myd88/NF-κB signaling pathway. International journal of molecular sciences 22: 2527.

    Article  CAS  Google Scholar 

  11. Moser, V.A., M.F. Uchoa, and C.J. Pike. 2018. TLR4 inhibitor TAK-242 attenuates the adverse neural effects of diet-induced obesity. Journal of neuroinflammation 15: 306.

    Article  CAS  Google Scholar 

  12. Gárate, I., B. García-Bueno, J.L. Madrigal, J.R. Caso, L. Alou, M.L. Gómez-Lus, and J.C. Leza. 2014. Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. Journal of neuroinflammation 11: 8.

    Article  Google Scholar 

  13. Neal, M.D., H. Jia, B. Eyer, M. Good, C.J. Guerriero, C.P. Sodhi, A. Afrazi, T. Prindle Jr, C. Ma, M. Branca, J. Ozolek, J.L. Brodsky, P. Wipf, and D.J. Hackam. 2013. Discovery and validation of a new class of small molecule Toll-like receptor 4 (TLR4) inhibitors. PLoS One 8: e65779.

  14. Azam, S., M. Jakaria, I.S. Kim, J. Kim, M.E. Haque, and D.K. Choi. 2019. Regulation of Toll-Like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: Focus on TLR4 signaling. Frontiers in immunology 10: 1000.

    Article  CAS  Google Scholar 

  15. Huang, N.Q., H. Jin, S.Y. Zhou, J.S. Shi, and F. Jin. 2017. TLR4 is a link between diabetes and Alzheimer’s disease. Behavioural brain research 316: 234–244.

    Article  CAS  Google Scholar 

  16. Fort, M.M., A. Mozaffarian, A.G. Stöver, S. Correia Jda, D.A. Johnson, R.T. Crane, R.J. Ulevitch, D.H. Persing, H. Bielefeldt-Ohmann, P. Probst, E. Jeffery, S.P. Fling, and R.M. Hershberg. 2005. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. The Journal of Immunology 174: 6416–6423.

    Article  CAS  Google Scholar 

  17. Kerfoot, S.M., E.M. Long, M.J. Hickey, G. Andonegui, B.M. Lapointe, R.C. Zanardo, C. Bonder, W.G. James, S.M. Robbins, and P. Kubes. 2004. TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. The Journal of Immunology 173: 7070–7077.

    Article  CAS  Google Scholar 

  18. Adegoke, E.O., S.O. Adeniran, Y. Zeng, X. Wang, H. Wang, C. Wang, H. Zhang, P. Zheng, and G. Zhang. 2019. Pharmacological inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine arginine toxicity in bovine Sertoli cells. Journal of Applied Toxicology 39: 832–843.

    Article  CAS  Google Scholar 

  19. Kim, S.W., H. Lee, H.K. Lee, I.D. Kim, and J.K. Lee. 2019. Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta neuropathologica communications 7: 1–14.

    Article  Google Scholar 

  20. Yang, H., X. Cheng, Y.L. Yang, Y.H. Wang, and G.H. Du. 2017. Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells. Neural regeneration research 12: 1860–1864.

    Article  CAS  Google Scholar 

  21. Cheng, X., Y.L. Yang, H. Yang, Y.H. Wang, and G.H. Du. 2018. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. International immunopharmacology 56: 29–35.

    Article  CAS  Google Scholar 

  22. Liu, M., S.S. Zhang, D.N. Liu, Y.L. Yang, Y.H. Wang, and G.H. Du. 2021. Chrysomycin A attenuates neuroinflammation by down-regulating NLRP3/Cleaved caspase-1 signaling pathway in LPS-stimulated mice and BV2 cells. International Journal of Molecular Sciences 22: 6799.

    Article  CAS  Google Scholar 

  23. Ataie, Z., M. Dastjerdi, K. Farrokhfall, and Z. Ghiravani. 2021. The effect of cinnamaldehyde on iNOS activity and NO-induced islet insulin secretion in high-fat-diet rats. Evidence-Based Complementary and Alternative Medicine 2021: 9970678.

    Article  Google Scholar 

  24. Xu, X., H. Xu, F. Ren, L. Huang, J. Xu, and F. Li. 2021. Protective effect of scorpion venom heat-resistant synthetic peptide against PM2.5-induced microglial polarization via TLR4-mediated autophagy activating PI3K/AKT/NF-κB signaling pathway. Journal of Neuroimmunology 355: 577567.

  25. Huai, W., R. Zhao, H. Song, J. Zhao, L. Zhang, L. Zhang, C. Gao, L. Han, and W. Zhao. 2014. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nature communications 5: 4738.

    Article  CAS  Google Scholar 

  26. Zhang, Y., X. Liu, X. Bai, Y. Lin, Z. Li, J. Fu, M. Li, T. Zhao, H. Yang, R. Xu, J. Li, J. Ju, B. Cai, C. Xu, and B. Yang. 2018. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. Journal of pineal research 64: e12449.

  27. Kim, S.Y., C.Y. Jin, C.H. Kim, Y.H. Yoo, S.H. Choi, G.Y. Kim, H.M. Yoon, H.T. Park, and Y.H. Choi. 2019. Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. International Journal of Molecular Medicine 43: 682–692.

    CAS  PubMed  Google Scholar 

  28. Alliot, F., I. Godin, and B. Pessac. 1999. Microglia derive from progenitors originating from the yolk sac, and which proliferate in the brain. Developmental Brain Research 117: 145–152.

    Article  CAS  Google Scholar 

  29. Liu, Y.J., X.L. Wu, W.H. Jin, and Y.L. Guo. 2020. Immunomodulatory effects of a low-molecular weight polysaccharide from Enteromorpha prolifera on RAW 264.7 macrophages and cyclophosphamide-induced immunosuppression mouse models. Marine drugs 18: 340.

  30. Karunarathne, W., I. Molagoda, Y.H. Choi, S.R. Park, S. Lee, and G.Y. Kim. 2021. Bisphenol A: a potential Toll-like receptor 4/myeloid differentiation factor 2 complex agonist. Environmental Pollution 278: 116829.

  31. Yu, C.I., C.I. Cheng, Y.F. Kang, P.C. Chang, I.P. Lin, Y.H. Kuo, A.J. Jhou, M.Y. Lin, C.Y. Chen, and C.H. Lee. 2020. Hispidulin inhibits neuroinflammation in lipopolysaccharide-activated BV2 microglia and attenuates the activation of Akt NF-κB and STAT3 pathway. Neurotoxicity research 38: 163–174.

    Article  CAS  Google Scholar 

  32. Nam, H.Y., J.H. Nam, G. Yoon, J.Y. Lee, Y. Nam, H.J. Kang, H.J. Cho, J. Kim, and H.S. Hoe. 2018. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. Journal of neuroinflammation 15: 271.

    Article  Google Scholar 

  33. Wang-Sheng, C., A. Jie, L. Jian-Jun, H. Lan, X. Zeng-Bao, and L. Chang-Qing. 2017. Piperine attenuates lipopolysaccharide (LPS)-induced inflammatory responses in BV2 microglia. International immunopharmacology 42: 44–48.

    Article  CAS  Google Scholar 

  34. Qiu, Z., Y. He, H. Ming, S. Lei, Y. Leng, and Z.Y. Xia. 2019. Lipopolysaccharide (LPS) Aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. Journal of diabetes research 2019: 8151836.

    PubMed  PubMed Central  Google Scholar 

  35. Wu, J., Y. Luo, Q. Jiang, S. Li, W. Huang, L. Xiang, D. Liu, Y. Hu, P. Wang, X. Lu, G. Zhang, F. Wang, and X. Meng. 2019. Coptisine from Coptis chinensis blocks NLRP3 inflammasome activation by inhibiting caspase-1. Pharmacological research 147: 104348.

  36. Qu, J., X.Y. Tao, P. Teng, Y. Zhang, C.L. Guo, L. Hu, Y.N. Qian, C.Y. Jiang, and W.T. Liu. 2017. Blocking ATP-sensitive potassium channel alleviates morphine tolerance by inhibiting HSP70-TLR4-NLRP3-mediated neuroinflammation. Journal of neuroinflammation 14: 228.

    Article  Google Scholar 

  37. Huang, M.Y., C.E. Tu, S.C. Wang, Y.L. Hung, C.C. Su, S.H. Fang, C.S. Chen, P.L. Liu, W.C. Cheng, Y.W. Huang, and C.Y. Li. 2018. Corylin inhibits LPS-induced inflammatory response and attenuates the activation of NLRP3 inflammasome in microglia. BMC complementary and alternative medicine 18: 221.

    Article  Google Scholar 

  38. Yang, J.W., S.J. Yang, J.M. Na, H.G. Hahn, and S.W. Cho. 2018. 3-(Naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride attenuates NLRP3 inflammasome-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglial cells. Biochemical and biophysical research communications 495: 151–156.

    Article  CAS  Google Scholar 

  39. Liu, X., H. Liu, X. Lu, and S. Zhao. 2021. N-acetylcysteine alleviates ocular surface damage in STZ-induced diabetic mice by inhibiting the ROS/NLRP3/caspase-1/IL-1β signaling pathway. Experimental Eye Research 209: 108654.

  40. Liu, X., Z. Hu, J. Qu, J. Li, K. Gong, L. Wang, J. Jiang, X. Li, R. He, L. Duan, W. Luo, C. Xia, and D. Luo. 2021. AKR1B10 confers resistance to radiotherapy via FFA/TLR4/NF-κB axis in nasopharyngeal carcinoma. International Journal of Biological Sciences 17: 756–767.

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the National Key R&D Program of China (2020YFC2008302), the National Natural Science Foundation of China (81473383), and the Medical and Health Innovation Project of Chinese Academy of Medical Sciences (2016-I2M-3–007).

Author information

Authors and Affiliations

Authors

Contributions

Yue-Hua Wang and Guan-Hua Du designed the experiments; Shan-Shan Zhang, Man Liu, Dong-Ni Liu, and Ying-Lin Yang performed the experiments; Shan-Shan Zhang and Yue-Hua Wang analyzed the data; and all the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guan-Hua Du or Yue-Hua Wang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 238 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SS., Liu, M., Liu, DN. et al. TLR4-IN-C34 Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses via Downregulating TLR4/MyD88/NF-κB/NLRP3 Signaling Pathway and Reducing ROS Generation in BV2 Cells. Inflammation 45, 838–850 (2022). https://doi.org/10.1007/s10753-021-01588-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01588-8

KEY WORDS

Navigation