Skip to main content
Log in

Dietary Docosahexaenoic Acid as a Potential Treatment for Semi-acute and Chronic Particle-Induced Pulmonary Inflammation in Balb/c Mice

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute and chronic inflammation are vital contributing factors to pulmonary diseases which can be triggered by exposure to occupational and man-made particles; however, there are no established treatments. One potential treatment shown to have anti-inflammatory capabilities is the dietary supplement docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid found in fish oil. DHA’s anti-inflammatory mechanisms are unclear for particle-induced inflammation; therefore, this study evaluated DHA as a prophylactic treatment for semi-acute and chronic particle-induced inflammation in vivo. Balb/c mice were fed a control or 1% DHA diet and exposed to dispersion media, an inflammatory multi-walled carbon nanotube (MWCNT), or crystalline silica (SiO2) either once (semi-acute) or once a week for 4 weeks (chronic). The hypothesis was that DHA will decrease pulmonary inflammatory markers in response to particle-induced inflammation. Results indicated that DHA had a trending anti-inflammatory effect in mice exposed to MWCNT. There was a general decrease in inflammatory signals within the lung lavage fluid and upregulation of M2c macrophage gene expression in the spleen tissue. In contrast, mice exposed to SiO2 while on the DHA diet significantly increased most inflammatory markers. However, DHA stabilized the phagolysosomal membrane upon prolonged treatment. This indicated that DHA treatment may depend upon certain inflammatory particle exposures as well as the length of the exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Data and material will be provided by the authors if requested.

Code Availability

Not applicable.

References

  1. Forum of International Respiratory Societies. 2017. The global impact of respiratory disease, 2nd ed. Sheffield: European Respiratory Society.

    Google Scholar 

  2. Ray, J. L., P. Fletcher, R. Burmeister, and A. Holian. 2019. The role of sex in particle‐induced inflammation and injury. WIREs Nanomedicine and Nanobiotechnology e1589. https://doi.org/10.1002/wnan.1589.

  3. Yokel, R.A., and R.C. MacPhail. 2011. Engineered nanomaterials: Exposures hazards and risk prevention. Journal of Occupational Medicine and Toxicology 6: 7. https://doi.org/10.1186/1745-6673-6-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lam, C., J.T. James, R. McCluskey, S. Arepalli, and R.L. Hunter. 2006. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Critical Reviews in Toxicology 36: 189–217. https://doi.org/10.1080/10408440600570233.

    Article  CAS  PubMed  Google Scholar 

  5. Pollard, K.M. 2016. Silica Silicosis and Autoimmunity. Frontiers in Immunology 7: 97. https://doi.org/10.3389/fimmu.2016.00097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clarke, T.C., L.I. Black, B.J. Stussman, P.M. Barnes, and R.L. Nahin. 2015. Trends in the use of complementary health approaches among adults: United States 2002–2012. National Health Statistics Report 79: 1–16.

    Google Scholar 

  7. Swanson, D., R. Block, and S.A. Mousa. 2012. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Advances in Nutrition 3: 1–7. https://doi.org/10.3945/an.111.000893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Devassy, J.G., S. Leng, M. Gabbs, M. Monirujjaman, and H.M. Aukema. 2016. Omega-3 polyunsaturated fatty acids and oxylipins in neuroinflammation and management of Alzheimer disease. Advances in Nutrition 7: 905–916. https://doi.org/10.3945/an.116.012187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell 140: 821–832. https://doi.org/10.1016/j.cell.2010.01.040.

    Article  CAS  Google Scholar 

  10. Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature 481: 278–286. https://doi.org/10.1038/nature10759.

    Article  CAS  PubMed  Google Scholar 

  11. Fletcher, P., R.F. Hamilton, J.F. Rhoderick, J.J. Pestka, and A. Holian. 2020. Docosahexaenoic acid impacts macrophage phenotype subsets and phagolysosomal membrane permeability with particle exposure. Journal of Toxicology and Environmental Health Part A 84 (4): 152–172. https://doi.org/10.1080/15287394.2020.1842826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Labonte, A. C., A.-C. Tosello-Trampont, and Y. S. Hahn. 2014. The role of macrophage polarization in infectious and inflammatory diseases. Molecules and Cells 37 (4): 275–285. https://doi.org/10.14348/molcells.2014.2374.

  13. Italiani, P., and D. Boraschi. 2014. From monocytes to M1/M2 macrophages: Phenotypical vs functional differentiation. Frontiers in Immunology 5: 514. https://doi.org/10.3389/fimmu.2014.00514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Byrne, A.J., S.A. Mathie, L.G. Gregory, and C.M. Lloyd. 2015. Pulmonary macrophages: Key players in the innate defence of the airways. Thorax 70: 1189–1196. https://doi.org/10.1136/thoraxjnl-2015-207020.

    Article  PubMed  Google Scholar 

  15. Hamilton, R.F., M. Buford, C. Xiang, N. Wu, and A. Holian. 2012. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhalation Toxicology 24 (14): 995–1008. https://doi.org/10.3109/08958378.2012.745633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thakur, S.A., R. Hamilton, T. Pikkarainen, and A. Holian. 2009. Differential binding of inorganic particles to MARCO. Toxicological Sciences 107 (1): 238–246. https://doi.org/10.1093/toxsci/kfn210.

    Article  CAS  PubMed  Google Scholar 

  17. Jessop, F., R.F. Hamilton, J.F. Rhoderick, P. Fletcher, and A. Holian. 2017. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicology and Applied Pharmacology 318: 58–68. https://doi.org/10.1016/j.taap.2017.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Girtsman, T.A., C.A. Beamer, N. Wu, M. Buford, and A. Holian. 2014. IL-1R signalling is critical for regulation of multi-walled carbon nanotubes-induced acute lung inflammation in C57Bl/6 mice. Nanotoxicology 8 (1): 17–27. https://doi.org/10.3109/17435390.2012.744110.

    Article  CAS  PubMed  Google Scholar 

  19. Pavan, C., V. Rabolli, M. Tomatis, B. Fubini, and D. Lison. 2014. Why does the hemolytic activity of silica predict its pro-inflammatory activity? Particle and Fibre Toxicology 11: 76. https://doi.org/10.1186/s12989-014-0076-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bates, M.A., C. Brandenberger, I.I. Langhor, K. Kumagai, A.L. Lock, J.R. Harkema, A. Holian, and J.J. Pestka. 2016. Silica-triggered autoimmunity in lupus-prone mice blocked by docosahexaenoic acid consumption. PLoS ONE 11 (8): e0160622. https://doi.org/10.1371/journal.pone.0160622.

    Article  PubMed  PubMed Central  Google Scholar 

  21. EFSA Nda Panel (EFSA panel on dietetic products, nutrition and allergies). 2014. Scientific opinion on the extension of use for DHA and EPA-rich algal oil from Schizochytrium sp as a Novel Food ingredient. European Food Safety Authority Journal 12 (10): 3843. https://doi.org/10.2903/j.efsa.2014.3843.

    Article  CAS  Google Scholar 

  22. Ray, J.L., and A. Holian. 2019. Sex differences in the inflammatory immune response to multi-walled carbon nanotubes and crystalline silica. Inhalation Toxicology 31 (7): 285–297. https://doi.org/10.1080/08958378.2019.1669743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Occupational Safety and Health Administration. 2016. Rules and regulations for Occupational exposure to respirable crystalline silica. Federal Register vol. 81, no. 58. https://www.federalregister.gov/documents/2016/03/25/2016-04800/occupational-exposure-to-respirable-crystalline-silica.

  24. Jessop, F., and A. Holian. 2015. Extracellular HMGB1 regulates multi-walled carbon nanotube-induced inflammation in vivo. Nanotoxicology 9 (3): 365–372. https://doi.org/10.3109/17435390.2014.933904.

    Article  CAS  PubMed  Google Scholar 

  25. Burmeister, R., J.F. Rhoderick, and A. Holian. 2019. Prevention of crystalline silica-induced inflammation by the anti-malarial hydroxychloroquine. Inhalation Toxicology 31 (7): 274–284. https://doi.org/10.1080/08958378.2019.1668091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dong, J., and Q. Ma. 2018. Macrophage polarization and activation at the interface of multi-walled carbon nanotube-induced pulmonary inflammation and fibrosis. Nanotoxicology 12 (2): 153–168. https://doi.org/10.1080/17435390.2018.1425501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Genin, M., F. Clement, A. Fattaccioli, M. Raes, and C. Michiels. 2015. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15: 577. https://doi.org/10.1186/s12885-015-1546-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hesketh, M., K.B. Sahin, Z.E. West, and R.Z. Murray. 2017. Macrophage phenotypes regulate scar formation and chronic wound healing. International Journal of Molecular Sciences 18: 1545. https://doi.org/10.3390/ijms18071545.

    Article  CAS  PubMed Central  Google Scholar 

  29. Jiang, Z., and L. Zhu. 2016. Update on the role of alternatively activated macrophages in asthma. Journal of Asthma and Allergy 9: 101–107. https://doi.org/10.2147/JAA.S104508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology 25 (12): 677–686. https://doi.org/10.1016/j.it.2004.09.015.

    Article  CAS  PubMed  Google Scholar 

  31. Ohama, H., A. Asai, I. Ito, S. Suzuki, M. Kobayashi, K. Higuchi, and F. Suzuki. 2015. M2b macrophage elimination and improved resistance of mice with chronic alcohol consumption to opportunistic infections. The American Journal of Pathology 185 (2): 420–431. https://doi.org/10.1016/j.ajpath.2014.09.022.

    Article  CAS  PubMed  Google Scholar 

  32. Tomioka, H. 2016. Exploration for promising drug targets useful for the development of novel antimycobacterial agents based on macrophage activation and polarization. Austin Journal of Clinical Immunology 3 (1): 1029.

    Google Scholar 

  33. Edwards, J.P., X. Zhang, K.A. Frauwirth, and D.M. Mosser. 2006. Biochemical and functional characterization of three activated macrophage populations. Journal of Leukocyte Biology 80 (6): 1298–1307. https://doi.org/10.1189/jlb.0406249.

    Article  CAS  PubMed  Google Scholar 

  34. He, H., S. Zhang, S. Tighe, J. Son, and S.C.G. Tseng. 2013. Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward M2 phenotype. The Journal of Biological Chemistry 288 (36): 25792–25803. https://doi.org/10.1074/jbc.M113.479584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koscsó, B., B. Csóka, E. Kókai, Z.H. Németh, P. Pacher, L. Virág, S.J. Leibovich, and G. Haskó. 2013. Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages. Journal of Leukocyte Biology 94: 1309–1315. https://doi.org/10.1189/jlb.0113043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carvalho, S., M. Ferrini, L. Herritt, A. Holian, Z. Jaffar, and K. Roberts. 2018. Multi-walled carbon nanotubes augment allergic airway eosinophilic inflammation by promoting cysteinyl leukotriene production. Frontiers in Pharmacology 9: 585.

    Article  Google Scholar 

  37. Watanabe, H., K. Numata, T. Ito, K. Takagi, and A. Matsukawa. 2004. Innate immune response in TH1- and TH2-dominant mouse strains. Shock 22 (5): 460–466. https://doi.org/10.1097/01.shk.0000142249.08135.e9.

    Article  CAS  PubMed  Google Scholar 

  38. Saifuddin, N., A.Z. Raziah, and A.R. Junizah. 2013. Carbon nanotubes: A review on structure and their interaction with proteins. Journal of Chemistry 2013: 676815. https://doi.org/10.1155/2013/676815.

    Article  CAS  Google Scholar 

  39. Dyachenko, A.G., M.V. Borysenko, and S.V. Pakhovchyshyn. 2004. Hydrophilic/hydrophobic properties of silica surfaces modified with metal oxides and polydimethylsiloxane. Adsorption Science & Technology 22 (6): 511–516. https://doi.org/10.1260/0263617042879546.

    Article  CAS  Google Scholar 

  40. Bhattacharya, A., D. Sun, M. Rahman, and G. Fernandes. 2007. Different ratios of eicosapentaenoic and docosahexaenoic omega-3 fatty acids in commercial fish oils differentially alter pro-inflammatory cytokines in peritoneal macrophages from C57BL/6 female mice. The Journal of Nutritional Biochemistry 18: 23–30. https://doi.org/10.1016/j.jnutbio.2006.02.005.

    Article  CAS  PubMed  Google Scholar 

  41. Calder, P. C. 2015. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1851: 469–484. https://doi.org/10.1016/j.bbalip.2014.08.010.

  42. Xi, S., D. Cohen, and L.H. Chen. 1998. Effects of fish oil on cytokines and immune functions of mice with murine AIDS. Journal of Lipid Research 39: 1677–1687.

    Article  CAS  Google Scholar 

  43. Pestka, J.J., P. Akbari, K.A. Wierenga, M.A. Bates, K.N. Gilley, J.G. Wagner, R.P. Lewandowski, and J.R. Harkema. 2021. Omega-3 polyunsaturated fatty acid intervention against established autoimmunity in a murine model of toxicant-triggered lupus. Frontiers in Immunology 12: 653464. https://doi.org/10.3389/fimmu.2021.653464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, X.-Y., L. Hao, Y.-H. Liu, C.-Y. Chen, V.J. Pai, and J.X. Kang. 2017. Protection against fine particle-induced pulmonary and systemic inflammation by omega-3 polyunsaturated fatty acids. Biochimica et Biophysica Acta - General Subjects 1861: 577–584. https://doi.org/10.1016/j.bbagen.2016.12.018.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, H., Y. Chan-Li, S. L. Collins, Y. Zhang, R. W. Hallowell, W. Mitzner, and M. R. Horton. 2014. Pulmonary delivery of docosahexaenoic acid mitigates bleomycin-induced pulmonary fibrosis. BMC Pulmonary Medicine 14: 64. http://www.biomedcentral.com/1471-2466/14/64.

  46. Svadlakova, T., F. Hubatka, P. Turanek Knotigova, P. Kulich, J. Masek, J. Kotoucek, J. Macak, and J. Turanek. 2020. Proinflammatory effect of carbon-based nanomaterials: In vitro study on stimulation of inflammasome NLRP3 via destabilisation of lysosomes. Nanomaterials 10: 418. https://doi.org/10.3390/nano10030418.

    Article  CAS  PubMed Central  Google Scholar 

  47. Dostert, C., V. Petrilli, R. Van Bruggen, C. Steele, B.T. Mossman, and J. Tschopp. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320 (5876): 674–677. https://doi.org/10.1126/science.1156995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hornung, V., F. Bauernfeind, A. Halle, E.O. Samstad, H. Kono, K.L. Rock, K.A. Fitzgerald, and E. Latz. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology 9 (8): 847–856. https://doi.org/10.1038/ni.1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Williams-Bey, Y., C. Boularan, A. Vural, N.-N. Huang, I.-Y. Hwang, C. Shan-Shi, and J.H. Kehrl. 2014. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy. PLoS ONE 9 (6): e97957. https://doi.org/10.1371/journal.pone.0097957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martínez-Micaelo, N., N. González-Abuín, M. Pinent, A. Ardévol, and M. Blay. 2016. Dietary fatty acid composition is sensed by the NLRP3 inflammasome: Omega-3 fatty acid (DHA) prevents NLRP3 activation in human macrophages. Food and Function 7: 3480–3487. https://doi.org/10.1039/c6fo00477f.

    Article  PubMed  Google Scholar 

  51. Turk, H.F., and R.S. Chapkin. 2013. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukotrienes and Essential Fatty Acids 88 (1): 43–47. https://doi.org/10.1016/j.plefa.2012.03.008.

    Article  CAS  Google Scholar 

  52. Wassall, S. R., X. Leng, S. W. Canner, E. R. Pennington, J. J. Kinnun, A. T. Cavazos, S. Dadoo, and S. R. Shaikh. 2018. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. Biochimica et Biophysica Acta (BBA) - Biomembranes 1860 (10): 1985–1993. https://doi.org/10.1016/j.bbamem.2018.04.016.

  53. De Boer, A.A., J.M. Monk, and L.E. Robinson. 2014. Docosahexaenoic acid decreases pro-inflammatory mediators in an in vitro murine adipocyte macrophage co-culture model. PLoS ONE 9 (1): e85037. https://doi.org/10.1371/journal.pone.0085037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang, H.Y., H.-N. Lee, W. Kim, and Y.-J. Surh. 2015. Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation. Life Sciences 120: 39–47. https://doi.org/10.1016/j.lfs.2014.10.014.

    Article  CAS  PubMed  Google Scholar 

  55. Titos, E., B. Rius, A. González-Périz, C. López-Vicario, E. Morán-Salvador, M. Martínez-Clemente, V. Arroyo, and J. Clària. 2011. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. The Journal of Immunology 187: 5408–5418. https://doi.org/10.4049/jimmunol.1100225.

    Article  CAS  PubMed  Google Scholar 

  56. Cai, W., S. Liu, M. Hu, X. Sun, W. Qiu, S. Zheng, X. Hu, and Z. Lu. 2018. Post-stroke DHA treatment protects against acute ischemic brain injury by skewing macrophage polarity toward the M2 phenotype. Translational Stroke Research 9: 669–680. https://doi.org/10.1007/s12975-018-0662-7.

    Article  CAS  PubMed  Google Scholar 

  57. Filardy, A.A., D.R. Pires, M.P. Nunes, C.M. Takiya, C.G. Freire-de-Lima, F.L. Ribeiro-Gomes, and G.A. DosReis. 2010. Proinflammatory clearance of apoptotic neutrophils induces an IL-12 low IL-10 high regulatory phenotype in macrophages. The Journal of Immunology 185: 2044–2050. https://doi.org/10.4049/jimmunol.1000017.

    Article  CAS  PubMed  Google Scholar 

  58. Awad, F., E. Assrawi, C. Jumeau, S. Georgin-Lavialle, L. Cobret, P. Duquesnoy, W. Piterboth, and S.-A. Karabina. 2017. Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLoS ONE 12 (4): e0175336. https://doi.org/10.1371/journal.pone.0175336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anders, H.-J., B. Suarez-Alvarez, M. Grigorescu, O. Foresto-Neto, S. Steiger, J. Desai, J.A. Marschner, and S.R. Mulay. 2018. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury. Kidney International 93: 656–669. https://doi.org/10.1016/j.kint.2017.09.022.

    Article  CAS  PubMed  Google Scholar 

  60. Sardiello, M., M. Palmieri, A. di Ronza, D.L. Medina, M. Valenza, V.A. Gennarino, C. di Malta, and A. Ballabio. 2009. A gene network regulating lysosomal biogenesis and function. Science 325 (5939): 473–477. https://doi.org/10.1126/science.1174447.

    Article  CAS  PubMed  Google Scholar 

  61. Fang, L., J. Hodge, F. Saaoud, J. Wang, S. Iwanowycz, Y. Wang, Y. Hui, and D. Fan. 2017. Transcriptional factor EB regulates macrophage polarization in the tumor microenvironment. OncoImmunology 6 (5): e1312042. https://doi.org/10.1080/2162402X.2017.1312042.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the technical support from the Center for Environmental Health Sciences’ (CEHS) Core Facilities at University of Montana (UM): Inhalation and Pulmonary Physiology Core, Molecular Histology and Fluorescence Imaging Core, and the Fluorescence Cytometry Core. A special thank you to Dr. Joanna Kreitinger at Dermaxon and Dr. Sarjubhai Patel at FYR Diagnostics for use of their Bio-Rad 384-well CFX Maestro’s; Lou Herritt and Pamela Shaw within the CEHS Core facilities; Dr. Jack Harkema at Michigan State University for help with the semi-acute histopathology scoring; Iheanyi Amadi for help with lung airway wall thickness analysis; and UM’s Laboratory Animal Resources technicians and facility.

Funding

Paige Fletcher was supported by the Ruth L. Kirschstein NRSA Pre-doctoral Fellowship from the National Institute of Environmental Health Sciences (F31 ES028100). This research was supported by grants from the National Institute of Environmental Health Sciences (R01 ES023209 and R01 ES027353) and National Institute of General Medical Sciences (P30 GM103338). Paige Fletcher was awarded one of QIAGEN’s featured young scientists of the month (November 2018) where she received QIAGEN products that contributed to this research.

Author information

Authors and Affiliations

Authors

Contributions

PF designed and carried out the studies, analyzed the in vivo and ex vivo studies, and performed statistical analysis. PF wrote the first draft of the manuscript. RFH set up the ex vivo studies, assisted in lung pathology scoring, and provided statistical advice. JFR assisted with mRNA quantification by qPCR and provided qPCR advice. BP and MB assisted PF with the in vivo studies. JJP assisted PF with logistics of the in vivo studies and supplied the DHA microalgal oil within the diets. AH assisted PF with overall study design and coordination. All authors contributed to furthering the manuscript’s drafts and approved the final manuscript.

Corresponding author

Correspondence to Paige Fletcher.

Ethics declarations

Disclaimer

The content within is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Ethics Approval

The animal use protocol (035-16AHCEHS-062816) was approved by the University of Montana Institutional Animal Care and Use Committee for all mouse studies described within this manuscript. The mice are maintained in microisolation containers within the BSL-2 Laboratory Animal Resources facility at the University of Montana in the accordance with the Guide for the Care and Use of Laboratory Animals. The animal care facility at the University of Montana is staffed with full-time veterinarians that are AAALAC accredited. Mice were monitored on a daily basis along with during/after exposure to particles. Mice were anesthetized with isoflurane before particle or vehicle control exposures so as not to use any restraints or cause distress. All procedures within these studies caused minimal discomfort to the mice; however, in any cases where it was deemed that the mice were in pain or distress (adverse body weight, abnormal activity, poor grooming, abnormal posture), the animal was humanely euthanized.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 629 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, P., Hamilton, R.F., Rhoderick, J.F. et al. Dietary Docosahexaenoic Acid as a Potential Treatment for Semi-acute and Chronic Particle-Induced Pulmonary Inflammation in Balb/c Mice. Inflammation 45, 677–694 (2022). https://doi.org/10.1007/s10753-021-01576-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01576-y

KEY WORDS

Navigation