Skip to main content

Advertisement

Log in

Oleuropein Protects Human Retinal Pigment Epithelium Cells from IL-1β–Induced Inflammation by Blocking MAPK/NF-κB Signaling Pathways

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract—

Proinflammatory mediators such as interleukin (IL)-1β cause retinal pigment epithelium (RPE) inflammation, which is related to visual deterioration, including age-related macular degeneration and diabetic retinopathy. Oleuropein is a polyphenol compound that shows potent anti-inflammatory, antioxidant, and anti-cancer activities, but its effects on IL-1β–induced inflammation have not been examined in the adult RPE cell line ARPE-19. Here, we assessed the ability of oleuropein to attenuate this inflammation in ARPE-19 cells. IL-1β induced secretion of the inflammatory cytokines IL-6, monocyte chemoattractant protein-1 (MCP)-1, and soluble intercellular adhesion molecule (sICAM)-1. As measured by enzyme-linked immunosorbent assay, oleuropein significantly inhibited levels of all three proteins and led to decreased monocyte adhesiveness to ARPE-19 cells. To clarify the underlying anti-inflammatory mechanisms, we used western blots to evaluate the effect of oleuropein on inactivation of the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. The results showed that oleuropein significantly decreased levels of the inflammatory mediator cyclooxygenase-2 and increased anti-inflammatory protein HO-1 expression. We next examined if the anti-inflammatory activity of oleuropein arises via inactivated NF-κB. We found that suppressing phosphorylation of the JNK1/2 and p38 MAPK signaling pathways inhibited IL-6, MCP-1, and sICAM-1 secretion, implicating these pathways and NF-κB suppression in the effects of oleuropein. These results indicate that oleuropein shows potential for the prevention and treatment of inflammatory diseases of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIALS

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kaarniranta, K., D. Sinha, J. Blasiak, A. Kauppinen, Z. Vereb, A. Salminen, E. Boulton, and G. Petrovski. 2013. Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9: 973–984.

    Article  CAS  Google Scholar 

  2. Samuels, I.S., B.A. Bell, A. Pereira, J. Saxon, and N.S. Peachey. 2015. Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes. Journal of Neurophysiology 113: 1085–1099.

    Article  CAS  Google Scholar 

  3. Giurdanell, G., C.D. Anfuso, M. Olivieri, G. Lupo, N. Caporarello, C.M. Eandi, F. Drago, C. Bucolo, and S. Salomone. 2015. Biochemical Pharmacology 96: 278–287.

    Article  Google Scholar 

  4. Ambati, J., and B.J. Fowler. 2012. Mechanisms of age-related macular degeneration. Neuron 75: 26–39.

    Article  CAS  Google Scholar 

  5. Nowak, J.Z. 2006. Age-related macular degeneration (AMD): Pathogenesis and therapy. Pharmacological Reports 58: 353–363.

    CAS  PubMed  Google Scholar 

  6. Simó, R., M. Villarroel, L. Corraliza, C. Hernández, and M. Garcia-Ramírez. 2010. The retinal pigment epithelium: Something more than a constituent of the blood-retinal barrier-implications for the pathogenesis of diabetic retinopathy. Journal of Biomedicine and Biotechnology 2010: 190724.

  7. López-Otín, C., M.A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The hallmarks of aging. Cell 153: 1194–1217.

    Article  Google Scholar 

  8. Ooff, Y., S.M. Man, R. Aggio-Bruce, R. Natoli, and N. Fernando. 2019. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Frontiers in Immunology 10: 1618.

    Article  Google Scholar 

  9. Cheng, S.C., W.C. Huang, S.P. Jong-Hwei, Y.H. Wu, and C.Y. Cheng. 2019. Quercetin inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. International Journal of Molecular Sciences 20: 2957.

    Article  CAS  Google Scholar 

  10. Noma, H., H. Funatsu, M. Yamasaki, H.H. Tsukamoto, T. Mimura, T. Sone, K. Jian, I. Sakamoto, K. Nakano, H. Yamashita, A. Minamoto, and H.K. Mishima. 2005. Pathogenesis of macular edema with branch retinal vein occlusion and intraocular levels of vascular endothelial growth factor and interleukin-6. American Journal of Ophthalmology 140: 256–261.

    Article  CAS  Google Scholar 

  11. Tacke, F., and G.J. Randolph. 2006. Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211: 609–618.

    Article  CAS  Google Scholar 

  12. Müller, N. 2019. The role of intercellular adhesion molecule-1 in the pathogenesis of psychiatric disorders. Frontiers in Pharmacology 10: 1251.

    Article  Google Scholar 

  13. Tao, L., Y. Qiu, X. Fu, R. Lin, C. Lei, J. Wang, and B. Lei. 2016. Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-kappaB pathways in human retinal pigment epithelium. Journal of Neuroinflammation 13: 35.

    Article  Google Scholar 

  14. Klein, R., M.D. Knudtson, B.E. Klein, T.Y. Wong, M.F. Cotch, K. Liu, C.Y. Cheng, G.L. Burke, M.F. Saad, D.R. Jacobs Jr., and A.R. Sharrett. 2008. Inflammation, complement factor h, and age-related macular degeneration: The multi-ethnic study of atherosclerosis. Ophthalmology 115: 1742–1749.

    Article  Google Scholar 

  15. Wang, Y., V.M. Wang, and C.C. Chan. 2011. The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment. Eye 25: 127–139.

    Article  Google Scholar 

  16. Nediani, C., J. Ruzzolini, A. Romani, and L. Calorini. 2019. Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases. Antioxidants 8: 578.

    Article  CAS  Google Scholar 

  17. Kim, Y., Y. Choi, and T. Park. 2010. Hepatoprotective effect of oleuropein in mice: Mechanisms uncovered by gene expression profiling. Biotechnology Journal 5: 950–960.

    Article  CAS  Google Scholar 

  18. Bianchi, E., F. Scarinci, G. Ripandelli, J. Feher, E. Pacella, G. Magliulo, C.B. Gabrieli, R. Plateroti, P. Plateroti, F. Mignini, and M. Artico. 2013. Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis. International Journal of Molecular Medicine 31: 232–242.

    Article  Google Scholar 

  19. Huang, W.C., C.J. Liou, S.C. Shen, S. Hu, C.Y. Hsiao, and S.J. Wu. 2020. Luteolin attenuates IL-1β-induced THP-1 adhesion to ARPE-19 cells via suppression of NF-κB and MAPK pathways. Mediators of Inflammation. 9421340: 1–15.

    Google Scholar 

  20. Egwuagu, C.E. 2014. Chronic intraocular inflammation and development of retinal degenerative disease. Advances in Experimental Medicine and Biology 801: 417–425.

    Article  Google Scholar 

  21. Kauppinen, A., J.J. Paterno, J. Blasiak, A. Salminen, and K. Kaarniranta. 2016. Inflammation and its role in age-related macular degeneration. Cellular and Molecular Life Sciences 73: 1765–1786.

    Article  CAS  Google Scholar 

  22. Barbaro, B., G. Toietta, R. Maggio, M. Arciello, M. Tarocchi, A. Galli, and C. Balsano. 2014. Effects of the olive-derived polyphenol oleuropein on human health. International Journal of Molecular Sciences 15: 18508–18524.

    Article  Google Scholar 

  23. Trakkides, T.O., N. Schäfer, M. Reichenthaler, K. Kühn, J.M.G. Ricardo, E. Brandwijk, E.J.M. Toonen, F. Urban, J. Wegener, V. Enzmann, and D. Pauly. 2019. Oxidative stress increases endogenous complement-dependent inflammatory and angiogenic responses in retinal pigment epithelial cells independently of exogenous complement sources. Antioxidants 8: 548.

    Article  CAS  Google Scholar 

  24. Pawlowska, E., J. Szczepanska, A. Koskela, K. Kaarniranta, and J. Blasiak. 2019. Dietary polyphenols in age-related macular degeneration: Protection against oxidative stress and beyond. Oxidative Medicine and Cellular Longevity 2019: 9682318.

  25. Hytti, M., D. Szabo, and N. Piippo. 2017. Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells. Journal of Nutritional Biochemistry 42: 37–42.

    Article  CAS  Google Scholar 

  26. Afonina, I.S., C. Muller, S.J. Martin, and R. Beyaert. 2015. Proteolytic processing of interleukin-1 family cytokines: Variations on a common theme. Immunity 42: 991–1004.

    Article  CAS  Google Scholar 

  27. Wang, Q., J. Qi, R. Hu, Y. Chen, A. Kijlstra, and P. Yang. 2012. Effect of berberine on proinflammatory cytokine production by ARPE-19 cells following stimulation with tumor necrosis factor-alpha. Investigative Ophthalmology & Visual Science 53: 2395–2402.

    Article  Google Scholar 

  28. Rutar, M., R. Natoli, K. Valter, and J.M. Provis. 2011. Early focal expression of the chemokine Ccl2 by Muller cells during exposure to damage-inducing bright continuous light. Investigative Ophthalmology & Visual Science 52: 2379–2388.

    Article  CAS  Google Scholar 

  29. Rutar, M., R. Natoli, and J.M. Provis. 2012. Small interfering RNA-mediated suppression of Ccl2 in Müller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration. Journal of Neuroinflammation 9: 221–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Holan, V., B. Hermankova, M. Krulova, and A. Zajicova. 2019. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells—A clue to stem cell-based therapy. World Journal of Stem Cells 26 (11): 957–967.

    Article  Google Scholar 

  31. Jonas, J.B., Y. Tao, and M. Neumaier. 2010. Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration. Archives of Ophthalmology 128: 1281–1286.

    Article  CAS  Google Scholar 

  32. Heidenkummer, H.P., and A. Kampik. 1995. Surgical extraction of subretinal pseudotumors in age related macular degeneration: Clinical, morphologic and immunohistochemical results. Der Ophthalmologe 92: 631–639.

    CAS  PubMed  Google Scholar 

  33. Mullins, R.F., J.M. Skeie, E.A. Malone, and M.H. Kuehn. 2006. Macular and peripheral distribution of ICAM-1 in the human choriocapillaris and retina. Molecular Vision 30: 12224–12235.

    Google Scholar 

  34. Conti, B., C. Bucolo, C. Giannavola, G. Puglisi, P. Giunchedi, and U. Conte. 1997. Biodegradable microspheres for the intravitreal administration of acyclovir: In vitro/in vivo evaluation. European Journal of Pharmaceutical Sciences 5: 287–293.

    Article  CAS  Google Scholar 

  35. Drira, R., S. Chen, and K. Sakamoto. 2011. Oleuropein and hydroxytyrosol inhibit adipocyte differentiation in 3 T3–L1 cells. Life Sciences 7: 708–716.

    Article  Google Scholar 

  36. Hadrich, F., M. Garcia, A. Maalej, M. Moldes, H. Isoda, B. Feve, and S. Sayadi. 2016. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells. Life Sciences 151: 167–1731.

    Article  CAS  Google Scholar 

  37. Giner, E., M.C. Recio, J.L. Ríos, J.M. Cerdá-Nicolás, and R.M. Giner. 2016. Chemopreventive effect of oleuropein in colitis-associated colorectal cancer in c57bl/6 mice. Molecular Nutrition & Food Research 60: 242–255.

    Article  CAS  Google Scholar 

Download references

Funding

The present study was supported by grants from the Chang Gung Memorial Hospital (grants CMRPF1L0011, CMRPF1K0081, and CMRPF1H0111) and the Ministry of Science and Technology in Taiwan (grant 109–2320-B-255–006-MY3).

Author information

Authors and Affiliations

Authors

Contributions

Designed and performed the experiments: SJW, WCH, and CHH. Analysis and interpretation of data: MLH and YRZ. Drafting the manuscript: SJW and SH. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Chun‑Hsun Huang or Shu-Ju Wu.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, ML., Huang, WC., Zhou, YR. et al. Oleuropein Protects Human Retinal Pigment Epithelium Cells from IL-1β–Induced Inflammation by Blocking MAPK/NF-κB Signaling Pathways. Inflammation 45, 297–307 (2022). https://doi.org/10.1007/s10753-021-01546-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01546-4

KEY WORDS:

Navigation