Skip to main content

Advertisement

Log in

Neuroprotective Effect of Plasminogen Activator Inhibitor-1 Antagonist in the Rat Model of Mild Traumatic Brain Injury

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract—

Plasminogen activator inhibitor-1 (PAI-1) antagonists are known for their neuroprotective effects. In this study, it was aimed to investigate the possible protective effects of PAI-1 antagonists in a rat mild traumatic brain injury (TBI) model. Sprague–Dawley male rats were grouped as sham (n = 7), TBI (n = 9), and TBI + PAI-1 antagonist (5 and 10 mg/kg TM5441 and TM5484; n = 6–7). Under anesthesia, TBI was induced by dropping a metal 300-g weight from a height of 1 m on the skull. Before and 24-h after trauma neurological examination, tail suspension, Y-maze, and novel object recognition tests were performed. Twenty-four hours after TBI, the rats were decapitated and activities of myeloperoxidase, nitric oxide release, luminol-, and lucigenin-enhanced chemiluminescence were measured. Also, interleukin-1β, interleukin-6, tumor necrosis factor, interleukin-10, tumor growth factor-β, caspase-3, cleaved caspase-3, and PAI levels were measured with the ELISA method in the brain tissue. Brain injury was graded histopathologically following hematoxylin–eosin staining. Western blot and immunohistochemical investigation for low-density lipoprotein receptor, matrix metalloproteinase-3, and nuclear factor-κB were also performed. Data were analyzed using GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA) and expressed as means ± SEM. Values of p < 0.05 were considered to be statistically significant. Higher levels of myeloperoxidase activity in the TBI group (p < 0.05) were found to be suppressed in 5 and 10 mg/kg TM5441 treatment groups (p < 0.05–p < 0.01). The tail suspension test score was increased in the TBI group (p < 0.001) and decreased in all treatment groups (p < 0.05–0.001). The histologic damage score was increased statistically significantly in the cortex, dentate gyrus, and CA3 regions in the TBI group (p < 0.01–0.001), decreased in the treatment groups in the cortex and dentate gyrus (p < 0.05–0.001). PAI antagonists, especially TM5441, have antioxidant and anti-inflammatory properties against mild TBI in the acute period. Behavioral test results were also improved after PAI antagonist treatment after mild TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CL:

Chemiluminescence

DG:

Dentate gyrus

DI:

Discrimination index

DS:

Difference score

IL:

Interleukin

LDLR:

Low-density lipoprotein receptor

MMP3:

Matrix metalloproteinase-3

MPO:

Myeloperoxidase

NF-κB:

Nuclear factor-κB

NO:

Nitric oxide

PAI-1:

Plasminogen activator inhibitor-1

PBS:

Phosphate-buffered saline

PMNs:

Polymorphonuclear leukocytes

RI:

Recognition index

ROM:

Reactive oxygen metabolites

ROS:

Reactive oxygen species

TBI:

Traumatic brain injury

TGF:

Tumor growth factor

TNF:

Tumor necrosis factor

tPA:

Tissue plasminogen activator

References

  1. Menon DK, Schwab K, Wright DW, Maas AI. Demographics and Clinical Assessment Working Group of the international and interagency initiative toward common data elements for research on traumatic brain injury and psychological health. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637- 40.

  2. Bomyea J., A.J Lang, P.P Schnurr. 2017. TBI and treatment response in a randomized trial of acceptance and commitment therapy. J Head Trauma Rehabil. 32(5):E35-E43.

  3. Ghajar, J. 2000. Traumatic brain injury. Lancet 356: 923–929.

    CAS  PubMed  Google Scholar 

  4. Liu B., G Zhang, S Cui, G Du. 2020. Inhibition of RNF6 alleviates traumatic brain injury by suppressing STAT3 signaling in rats. Brain Behav. 10(12):e01847.

  5. Maas, A.I.R., D.K. Menon, P.D. Adelson, N. Andelic, M.J. Bell, A. Belli, et al. 2017. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurology 16 (12): 987–1048.

    PubMed  Google Scholar 

  6. Miles S.R., J.M Harik, N.E Hundt, J Mignogna, N.J Pastorek, K.E Thompson, et al. 2017. Delivery of mental health treatment to combat veterans with psychiatric diagnoses and TBI histories. PLoS One. 12(9):e0184265.

  7. Marshall, C.A., E. Nalder, H. Colquhoun, E. Lenton, M. Hansen, D.R. Dawson, et al. 2019. Interventions to address burden among family caregivers of persons aging with TBI: A scoping review. Brain Injury 33 (3): 255–265.

    PubMed  Google Scholar 

  8. Zaninotto, A.L., M.M. El-Hagrassy, J.R. Green, M. Babo, V.M. Paglioni, G.G. Benute, et al. 2019. Transcranial direct current stimulation (tDCS) effects on traumatic brain injury (TBI) recovery: A systematic review. Dement Neuropsychol. 13 (2): 172–179.

    PubMed  PubMed Central  Google Scholar 

  9. Gardner, R.C., A.L. Byers, D.E. Barnes, Y. Li, J. Boscardin, and K. Yaffe. 2018. Mild TBI and risk of Parkinson disease: A chronic effects of neurotrauma consortium study. Neurology 90 (20): e1771–e1779.

    PubMed  PubMed Central  Google Scholar 

  10. Feigin, V.L., A. Theadom, S. Barker-Collo, N.J. Starkey, K. McPherson, M. Kahan, et al. 2013. Incidence of traumatic brain injury in New Zealand: A population-based study. Lancet Neurology 12 (1): 53–64.

    PubMed  Google Scholar 

  11. Prince, C., and M.E. Bruhns. 2017. Evaluation and treatment of mild traumatic brain injury: The role of neuropsychology. Brain Sciences 7 (8): 105.

    PubMed Central  Google Scholar 

  12. Biegon, A., P.A. Fry, C.M. Paden, A. Alexandrovich, J. Tsenter, and E. Shohami. 2004. Dynamic changes in N-methyl-D-aspartate receptors after closed head injury in mice: Implications for treatment of neurological and cognitive deficits. Proceedings of the National academy of Sciences of the United States of America 101: 5117–5122.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sullivan, P.G., J.N. Keller, M.P. Mattson, and S.W. Scheff. 1998. Traumatic brain injury alters synaptic homeostasis: Implications for impaired mitochondrial and transport function. Journal of Neurotrauma 15: 789–798.

    CAS  PubMed  Google Scholar 

  14. Salehi, A., J.H. Zhang, and A. Obenaus. 2017. Response of the cerebral vasculature following traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism 37 (7): 2320–2339.

    PubMed  PubMed Central  Google Scholar 

  15. Woodcock, T., and M.C. Morganti-Kossmann. 2013. The role of markers of inflammation in traumatic brain injury. Frontiers in Neurology 4: 18.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Griemert, E.V., S.M. Schwarzmaier, R. Hummel, C. Gölz, D. Yang, W. Neuhaus, et al. 2019. Plasminogen activator inhibitor-1 augments damage by impairing fibrinolysis after traumatic brain injury. Annals of Neurology 85 (5): 667–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Griemert, E.V., K. Recarte Pelz, K. Engelhard, M.K. Schäfer, and S.C. Thal. 2019. PAI-1 but not PAI-2 gene deficiency attenuates ischemic brain injury after experimental stroke. Translational Stroke Research 10 (4): 372–380.

    PubMed  Google Scholar 

  18. Brogren, H., L. Karlsson, M. Andersson, L. Wang, D. Erlinge, and S. Jern. 2004. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 104 (13): 3943–3948.

    CAS  PubMed  Google Scholar 

  19. Huang, J., M. Sabater-Lleal, F.W. Asselbergs, D. Tregouet, S.Y. Shin, J. Ding, et al. 2012. Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation. Blood 120 (24): 4873–4881.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hultman, K., F. Blomstrand, M. Nilsson, U. Wilhelmsson, K. Malmgren, M. Pekny, et al. 2010. Expression of plasminogen activator inhibitor-1 and protease nexin-1 in human astrocytes: Response to injury-related factors. Journal of Neuroscience Research 88 (11): 2441–2449.

    CAS  PubMed  Google Scholar 

  21. Simpson, A.J., N.A. Booth, N.R. Moore, and B. Bennett. 1991. Distribution of plasminogen activator inhibitor (PAI-1) in tissues. Journal of Clinical Pathology 44 (2): 139–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Giesen, P.L., and Y. Nemerson. 2000. Tissue factor on the loose. Seminars in Thrombosis and Hemostasis 26 (4): 379–384.

    CAS  PubMed  Google Scholar 

  23. Emeis, J.J. 1992. Regulation of the acute release of tissue-type plasminogen activator from the endothelium by coagulation activation products. Annals of the New York Academy of Sciences 667: 249–258.

    CAS  PubMed  Google Scholar 

  24. Gorlatova, N.V., J.M. Cale, H. Elokdah, D. Li, K. Fan, M. Warnock, et al. 2007. Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitor. Journal of Biological Chemistry 282 (12): 9288–9296.

    CAS  Google Scholar 

  25. Lawrence, D.A., S.T. Olson, S. Muhammad, D.E. Day, J.O. Kvassman, D. Ginsburg, et al. 2000. Partitioning of serpin-proteinase reactions between stable inhibition and substrate cleavage is regulated by the rate of serpin reactive center loop insertion into beta-sheet A. Journal of Biological Chemistry 275 (8): 5839–5844.

    CAS  Google Scholar 

  26. Kang, S., T. Tanaka, H. Inoue, C. Ono, S. Hashimoto, Y. Kioi, et al. 2020. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci U S A. 117 (36): 22351–22356.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. van der Poll, T., M. Levi, H.R. Büller, S.J. van Deventer, J.P. de Boer, C.E. Hack, et al. 1991. Fibrinolytic response to tumor necrosis factor in healthy subjects. Journal of Experimental Medicine 174 (3): 729–732.

    Google Scholar 

  28. Lip, G.Y., A.D. Blann, I.S. Farooqi, J. Zarifis, G. Sagar, and D.G. Beevers. 2002. Sequential alterations in haemorheology, endothelial dysfunction, platelet activation and thrombogenesis in relation to prognosis following acute stroke: The West Birmingham Stroke Project. Blood Coagulation & Fibrinolysis 13 (4): 339–347.

    CAS  Google Scholar 

  29. Tuttolomondo, A., A. Pinto, S. Corrao, D. Di Raimondo, P. Fernandez, R. Di Sciacca, et al. 2009. Immuno-inflammatory and thrombotic/fibrinolytic variables associated with acute ischemic stroke diagnosis. Atherosclerosis 203 (2): 503–508.

    CAS  PubMed  Google Scholar 

  30. Beuth, W., M. Kotschy, H.A. Kasprzak, D. Rosc, P. Osinski, and M. Sniegocki. 1996. Tissue plasminogen activator (T-PA) and tissue plasminogen activator inhibitor (PAI-1) in patients after head injury. Neurologia i Neurochirurgia Polska 30 (3): 427–434.

    CAS  PubMed  Google Scholar 

  31. Chan, S.L., N. Bishop, Z. Li, and M.J. Cipolla. 2018. Inhibition of PAI (plasminogen activator inhibitor)-1 improves brain collateral perfusion and injury after acute ischemic stroke in aged hypertensive rats. Stroke 49 (8): 1969–1976.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pelisch N., T Dan, A Ichimura, H Sekiguchi, D.E Vaughan, C van Ypersele de Strihou, T Miyata. 2015. Plasminogen activator inhibitor-1 antagonist TM5484 attenuates demyelination and axonal degeneration in a mice model of multiple sclerosis. PLoS One. 10(4):e0124510.

  33. Marmarou A., M.A Foda, W van den Brink, J Campbell, H Kita, K Demetriadou. 1994. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg. 80(2):291–300.

  34. Ucar, T., G. Tanriover, I. Gurer, M.Z. Onal, and S. Kazan. 2006. Modified experimental mild traumatic brain injury model. Journal of Trauma 60 (3): 558–565.

    Google Scholar 

  35. Tuğtepe, H., G. Sener, N.K. Biyikli, M. Yüksel, S. Cetinel, N. Gedik, et al. 2007. The protective effect of oxytocin on renal ischemia/reperfusion injury in rats. Regulatory Peptides 140 (3): 101–108.

    PubMed  Google Scholar 

  36. Bradley, P.P., D.A. Priebat, R.D. Christensen, and G. Rothstein. 1982. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. The Journal of Investigative Dermatology 78 (3): 206–209.

    CAS  PubMed  Google Scholar 

  37. Deshpande, S.S. 2001. Principles and applications of luminescence spectroscopy. Critical Reviews in Food Science and Nutrition 41 (3): 155–224.

    CAS  PubMed  Google Scholar 

  38. Kikuchi, K., T. Nagano, H. Hayakawa, Y. Hirata, and M. Hirobe. 1993. Real time measurement of nitric oxide produced ex vivo by luminol-H2O2 chemiluminescence method. Journal of Biological Chemistry 268 (31): 23106–23110.

    CAS  Google Scholar 

  39. Kikuchi, K., T. Nagano, H. Hayakawa, Y. Hirata, and M. Hirobe. 1993. Detection of nitric oxide production from a perfused organ by a luminol-H2O2 system. Analytical Chemistry 65 (13): 1794–1799.

    CAS  PubMed  Google Scholar 

  40. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193 (1): 265–275.

    CAS  Google Scholar 

  41. Antunes, M., and G. Biala. 2012. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cognitive Processing 13 (2): 93–110.

    CAS  PubMed  Google Scholar 

  42. Lueptow, L.M. 2017. Novel object recognition test for the investigation of learning and memory in mice. Journal of Visualized Experiments 126: 55718. https://doi.org/10.3791/55718.

    Article  Google Scholar 

  43. Miedel, C.J., J.M. Patton, A.N. Miedel, E.S. Miedel, and J.M. Levenson. 2017. Assessment of spontaneous alternation, novel object recognition and limb clasping in transgenic mouse models of amyloid-β and tau neuropathology. Journal of Visualized Experiments 123: 55523.

    Google Scholar 

  44. Bederson, J.B., L.H. Pitts, M. Tsuji, M.C. Nishimura, R.L. Davis, and H. Bartkowski. 1986. Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke 17 (3): 472–476.

    CAS  PubMed  Google Scholar 

  45. Toklu, H.Z., M.K. Uysal, L. Kabasakal, S. Sirvanci, F. Ercan, and M. Kaya. 2009. The effects of riluzole on neurological, brain biochemical, and histological changes in early and late term of sepsis in rats. Journal of Surgical Research 152 (2): 238–248.

    CAS  Google Scholar 

  46. Huber, A., A. Dorn, A. Witzmann, and J. Cervos-Navarro. 1993. Microthrombi formation after severe head trauma. International Journal of Legal Medicine 106 (3): 152–155.

    CAS  PubMed  Google Scholar 

  47. Dietrich, W.D., O. Alonso, and M. Halley. 1994. Early microvascular and neuronal consequences of traumatic brain injury: A light and electron microscopic study in rats. Journal of Neurotrauma 11 (3): 289–301.

    CAS  PubMed  Google Scholar 

  48. Schwarzmaier, S.M., S.W. Kim, R. Trabold, and N. Plesnila. 2010. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. Journal of Neurotrauma 27 (1): 121–130.

    PubMed  Google Scholar 

  49. Demir, D., P. Kuru Bektaşoğlu, T. Koyuncuoğlu, C. Kandemir, D. Akakın, M. Yüksel, et al. 2019. Neuroprotective effects of mildronate in a rat model of traumatic brain injury. Injury 50 (10): 1586–1592.

    PubMed  Google Scholar 

  50. Ichimura, A., S. Matsumoto, S. Suzuki, T. Dan, S. Yamaki, Y. Sato, et al. 2013. A small molecule inhibitor to plasminogen activator inhibitor 1 inhibits macrophage migration. Arteriosclerosis, Thrombosis, and Vascular Biology 33 (5): 935–942.

    CAS  PubMed  Google Scholar 

  51. Redford, E.J., R. Kapoor, and K.J. Smith. 1997. Nitric oxide donors reversibly block axonal conduction: Demyelinated axons are especially susceptible. Brain 120 (Pt 12): 2149–2157.

    PubMed  Google Scholar 

  52. Villalba N., S.K Sonkusare, T.A Longden, T.L Tran, A.M Sackheim, M.T Nelson, et al. 2014. Traumatic brain injury disrupts cerebrovascular tone through endothelial inducible nitric oxide synthase expression and nitric oxide gain of function. J Am Heart Assoc. 3(6):e001474.

  53. Tisdall, M.M., K. Rejdak, N.D. Kitchen, M. Smith, and A. Petzold. 2013. The prognostic value of brain extracellular fluid nitric oxide metabolites after traumatic brain injury. Neurocritical Care 19 (1): 65–68.

    CAS  PubMed  Google Scholar 

  54. Condron, M., S. Rowell, E. Dewey, T. Anderson, L. Lealiiee, D. Farrell, et al. 2018. The procoagulant molecule plasminogen activator inhibitor-1 is associated with injury severity and shock in patients with and without traumatic brain injury. Journal of Trauma and Acute Care Surgery 85 (5): 888–893.

    CAS  Google Scholar 

  55. Perez-Polo, J.R., H.C. Rea, K.M. Johnson, M.A. Parsley, G.C. Unabia, G. Xu, et al. 2013. Inflammatory consequences in a rodent model of mild traumatic brain injury. Journal of Neurotrauma 30 (9): 727–740.

    PubMed  PubMed Central  Google Scholar 

  56. Clark, R.S., P.M. Kochanek, S.C. Watkins, M. Chen, C.E. Dixon, N.A. Seidberg, et al. 2000. Caspase-3 mediated neuronal death after traumatic brain injury in rats. Journal of Neurochemistry 74 (2): 740–753.

    CAS  PubMed  Google Scholar 

  57. Saunders, J.W. 1966. Jr. Death in embryonic systems. Science. 154: 604–612.

    Google Scholar 

  58. Lazebnik, Y.A., S.H. Kaufmann, S. Desnoyers, G.G. Poirier, and W.C. Earnshaw. 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371 (6495): 346–347.

    CAS  PubMed  Google Scholar 

  59. Song, Q., S.P. Lees-Miller, S. Kumar, Z. Zhang, D.W. Chan, G.C. Smith, et al. 1996. DNA-dependent protein kinase catalytic subunit: A target for an ICE-like protease in apoptosis. EMBO Journal 15 (13): 3238–3246.

    CAS  Google Scholar 

  60. Kothakota, S., T. Azuma, C. Reinhard, A. Klippel, J. Tang, K. Chu, et al. 1997. Caspase-3-generated fragment of gelsolin: Effector of morphological change in apoptosis. Science 278 (5336): 294–298.

    CAS  PubMed  Google Scholar 

  61. Pike, B.R., X. Zhao, J.K. Newcomb, R.M. Posmantur, K.K. Wang, and R.L. Hayes. 1998. Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. NeuroReport 9 (11): 2437–2442.

    CAS  PubMed  Google Scholar 

  62. Liu P.F., Y.C Hu, B.H Kang, Y.K Tseng, P.C Wu, C.C Liang, et al. 2017. Expression levels of cleaved caspase-3 and caspase-3 in tumorigenesis and prognosis of oral tongue squamous cell carcinoma. PLoS One. 12(7):e0180620.

  63. Suzuki, Y., N. Nagai, K. Yamakawa, J. Kawakami, H.R. Lijnen, and K. Umemura. 2009. Tissue-type plasminogen activator (t-PA) induces stromelysin-1 (MMP-3) in endothelial cells through activation of lipoprotein receptor-related protein. Blood 114 (15): 3352–3358.

    CAS  PubMed  Google Scholar 

  64. Candelario-Jalil, E., Y. Yang, and G.A. Rosenberg. 2009. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158 (3): 983–994.

    CAS  PubMed  Google Scholar 

  65. Herz, J. 2001. The LDL receptor gene family: (un)expected signal transducers in the brain. Neuron 29 (3): 571–581.

    CAS  PubMed  Google Scholar 

  66. Lillis, A.P., L.B. Van Duyn, J.E. Murphy-Ullrich, and D.K. Strickland. 2008. LDL receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies. Physiological Reviews 88 (3): 887–918.

    CAS  PubMed  Google Scholar 

  67. Sashindranath, M., E. Sales, M. Daglas, R. Freeman, A.L. Samson, E.J. Cops, et al. 2012. The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: Evidence from mice and humans. Brain 135 (Pt 11): 3251–3264.

    PubMed  PubMed Central  Google Scholar 

  68. Sashindranath, M., A.L. Samson, C.E. Downes, P.J. Crack, A.J. Lawrence, Q.X. Li, et al. 2011. Compartment- and context-specific changes in tissue-type plasminogen activator (tPA) activity following brain injury and pharmacological stimulation. Laboratory Investigation 91 (7): 1079–1091.

    CAS  PubMed  Google Scholar 

  69. Mettang, M., S.N. Reichel, M. Lattke, A. Palmer, A. Abaei, V. Rasche, et al. 2018. IKK2/NF-κB signaling protects neurons after traumatic brain injury. The FASEB Journal 32 (4): 1916–1932.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Qin, Z.H., L.Y. Tao, and X. Chen. 2007. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacologica Sinica 28 (12): 1859–1872.

    CAS  PubMed  Google Scholar 

  71. Sanz, O., L. Acarin, B. González, and B. Castellano. 2002. NF-kappaB and IkappaBalpha expression following traumatic brain injury to the immature rat brain. Journal of Neuroscience Research 67 (6): 772–780.

    CAS  PubMed  Google Scholar 

  72. Yang, L., L.Y. Tao, and X.P. Chen. 2007. Roles of NF-kappaB in central nervous system damage and repair. Neuroscience Bulletin 23 (5): 307–313.

    CAS  PubMed  Google Scholar 

  73. Munivenkatappa, A., A. Agrawal, D.P. Shukla, D. Kumaraswamy, and B.I. Devi. 2016. Traumatic brain injury: Does gender influence outcomes? International Journal of Critical Illness and Injury Science 6 (2): 70–73. https://doi.org/10.4103/2229-5151.183024.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Eren, M., A.E. Boe, E.A. Klyachko, and D.E. Vaughan. 2014. Role of plasminogen activator inhibitor-1 in senescence and aging. Seminars in Thrombosis and Hemostasis 40 (6): 645–651. https://doi.org/10.1055/s-0034-1387883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Soeda, S., S. Koyanagi, Y. Kuramoto, M. Kimura, M. Oda, T. Kozako, et al. 2008. Anti-apoptotic roles of plasminogen activator inhibitor-1 as a neurotrophic factor in the central nervous system. Thrombosis and Haemostasis 100 (6): 1014–1020.

    CAS  PubMed  Google Scholar 

  76. Yang, D., N. Nemkul, A. Shereen, A. Jone, R.S. Dunn, D.A. Lawrence, et al. 2009. Therapeutic administration of plasminogen activator inhibitor-1 prevents hypoxic-ischemic brain injury in newborns. Journal of Neuroscience 29 (27): 8669–8674.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Toshio Miyata and Takashi Dan for their generous support in sending us PAI antagonists.

Turkan Koyuncuoglu: data curation.

Selin Akbulut: data curation.

Dilek Akakın: data curation, writing–reviewing and editing.

İrem Peker Eyüboğlu: data curation.

Can Erzik: data curation.

Meral Yüksel: data curation, writing–reviewing and editing.

Hizir Kurtel: visualization, investigation, supervision, writing–reviewing and editing.

Funding

This work was supported by Marmara University Scientific Research Projects Coordination Unit.

Author information

Authors and Affiliations

Authors

Contributions

Pınar Kuru Bektaşoğlu: conceptualization, methodology, data curation, writing–original draft preparation, writing–reviewing and editing.

Corresponding author

Correspondence to Pınar Kuru Bektaşoğlu.

Ethics declarations

Ethics Approval and Consent to Participate

All experimental procedures used in this investigation were reviewed and approved by the Marmara University Animal Care and Use Committee (March 12, 2019).

Consent for Publication

All authors consent to the publication of the manuscript in Inflammation.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•After mild TBI, PAI-1 antagonists TM5441 and TM5484 were used for the first time in the literature.

•PAI-1 inhibition reduced oxidative stress, inflammation, and neuronal damage in a TBI model.

•PAI antagonist treatment also improved corticospinal pathway functions and behavioral results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuru Bektaşoğlu, P., Koyuncuoğlu, T., Akbulut, S. et al. Neuroprotective Effect of Plasminogen Activator Inhibitor-1 Antagonist in the Rat Model of Mild Traumatic Brain Injury. Inflammation 44, 2499–2517 (2021). https://doi.org/10.1007/s10753-021-01520-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01520-0

KEY WORDS:

Navigation