Skip to main content

Advertisement

Log in

Ameliorative Effects of Oleuropein on Lipopolysaccharide-Induced Acute Lung Injury Model in Rats

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute lung injury (ALI) is one of the most common causes of death in diseases with septic shock. Oleuropein, one of the important components of olive leaf, has antioxidant and anti-inflammatory effects. The objective of this study was to investigate the effects of oleuropein on lipopolysaccharide (LPS)-induced ALI in rats. Oleuropein was administered to rats at a dose of 200 mg/kg for 20 days and LPS was given through intratracheal administration to induce ALI. The study was terminated after 12 h. The results showed that in the group treated with oleuropein, inflammatory cytokines and oxidative stress decreased in serum, bronchoalveolar lavage fluid (BALF), and lung tissue, and there were significant improvements in the picture of acute interstitial pneumonia (AIP) caused by LPS in histopathological examination. Based on the findings of the present study, oleuropein showed protective effects against LPS-induced ALI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Parvathaneni, K., S. Belani, D. Leung, C.J.L. Newth, and R.G. Khemani. 2017. Evaluating the performance of the pediatric acute lung injury consensus conference definition of acute respiratory distress syndrome. Pediatric Critical Care Medicine 18 (1): 17–25.

    Article  PubMed  Google Scholar 

  2. Butt, Y., A. Kurdowska, and T.C. Allen. 2016. Acute lung injury: a clinical and molecular review. Archives of Pathology and Laboratory Medicine 140 (4): 345–350.

    Article  CAS  PubMed  Google Scholar 

  3. Toy, P., et al. 2012. Transfusion-related acute lung injury: incidence and risk factors. Blood, The Journal of the American Society of Hematology 119 (7): 1757–1767.

    CAS  Google Scholar 

  4. Gao, J., Q. Liu, J. Li, C. Hu, W. Zhao, W. Ma, M. Yao, and L. Xing. 2020. Fibroblast growth factor 21 dependent TLR4/MYD88/NF-κB signaling activation is involved in lipopolysaccharide-induced acute lung injury. International Immunopharmacology 80: 106219.

    Article  CAS  PubMed  Google Scholar 

  5. Abraham, E. 2000. Coagulation abnormalities in acute lung injury and sepsis. American Journal of Respiratory Cell and Molecular Biology 22 (4): 401–404.

    Article  CAS  PubMed  Google Scholar 

  6. Trivedi, J., J. Shaikh, N. Chavan, D. Thorve, B. Chaudhary, A. Karade, S. Gupta, A. Patel, and S. Bhagwat. 2020. Pretreatment of nafithromycin attenuates inflammatory response in murine lipopolysaccharide induced acute lung injury. Cytokine 129: 155049.

    Article  CAS  PubMed  Google Scholar 

  7. Xie, K., Y. Yu, Y. Huang, L. Zheng, J. Li, H. Chen, H. Han, L. Hou, G. Gong, and G. Wang. 2012. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock 37 (5): 548–555.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, E., Y. Li, Z. Wei, Y. Fu, H. Lei, N. Zhang, Z. Yang, and G. Xie. 2014. Schisantherin A protects lipopolysaccharide-induced acute respiratory distress syndrome in mice through inhibiting NF-κB and MAPKs signaling pathways. International immunopharmacology 22 (1): 133–140.

    Article  CAS  PubMed  Google Scholar 

  9. Huang, W.-C., C.L. Lai, Y.T. Liang, H.C. Hung, H.C. Liu, and C.J. Liou. 2016. Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways. International immunopharmacology 40: 98–105.

    Article  CAS  PubMed  Google Scholar 

  10. Jeong, H.-Y., Y.S. Choi, J.K. Lee, B.J. Lee, W.K. Kim, and H. Kang. 2017. Anti-inflammatory activity of citric acid-treated wheat germ extract in lipopolysaccharide-stimulated macrophages. Nutrients 9 (7): 730.

    Article  PubMed Central  Google Scholar 

  11. Huang, X., Y. Zeng, Y. Jiang, Y. Qin, W. Luo, S. Xiang, S.R. Sooranna, and L. Pinhu. 2017. Lipopolysaccharide-binding protein downregulates fractalkine through activation of p38 MAPK and NF-κB. Mediators of Inflammation 2017: 120.

    Google Scholar 

  12. Rahman, M.M., and G. McFadden. 2011. Modulation of NF-κB signalling by microbial pathogens. Nature Reviews Microbiology 9 (4): 291–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fouad, A.A., W.H. Albuali, and I. Jresat. 2016. Protective effect of naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology 97 (5-6): 224–232.

    Article  CAS  PubMed  Google Scholar 

  14. Ma, X., D. Xu, Y. Ai, G. Ming, and S. Zhao. 2010. Fas inhibition attenuates lipopolysaccharide-induced apoptosis and cytokine release of rat type II alveolar epithelial cells. Molecular biology reports 37 (7): 3051–3056.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, L., et al. 2017. The anesthetic agent sevoflurane attenuates pulmonary acute lung injury by modulating apoptotic pathways. Brazilian Journal of Medical and Biological Research: 50(3).

  16. Tuleta, I., F. Stöckigt, U.R. Juergens, C. Pizarro, J.W. Schrickel, G. Kristiansen, G. Nickenig, and D. Skowasch. 2016. Intermittent hypoxia contributes to the lung damage by increased oxidative stress, inflammation, and disbalance in protease/antiprotease system. Lung 194 (6): 1015–1020.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, C.-M., Y.T. Tung, C.H. Wei, P.Y. Lee, and W. Chen. 2020. Anti-inflammatory and reactive oxygen species suppression through aspirin pretreatment to treat hyperoxia-induced acute lung injury in NF-κB–luciferase inducible transgenic mice. Antioxidants 9 (5): 429.

    Article  CAS  PubMed Central  Google Scholar 

  18. Zi-Ru, Y., and D. Guan-Hua. 2017. Research progress of drugs for the treatment of LPS-induced acute lung injury. Chinese Journal of New Drugs 26: 1510–1515.

    Google Scholar 

  19. Zhu, H., T. Xu, C. Qiu, B. Wu, Y. Zhang, L. Chen, Q. Xia, C. Li, B. Zhou, Z. Liu, and G. Liang. 2016. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats. European Journal of Medicinal Chemistry 121: 181–193.

    Article  CAS  PubMed  Google Scholar 

  20. Kaeidi, A., A. Sahamsizadeh, M. Allahtavakoli, I. Fatemi, M. Rahmani, E. Hakimizadeh, and J. Hassanshahi. 2020. The effect of oleuropein on unilateral ureteral obstruction induced-kidney injury in rats: the role of oxidative stress, inflammation and apoptosis. Molecular Biology Reports 47 (2): 1371–1379.

    Article  CAS  PubMed  Google Scholar 

  21. Al-Azzawie, H.F., and M.-S.S. Alhamdani. 2006. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life sciences 78 (12): 1371–1377.

    Article  CAS  PubMed  Google Scholar 

  22. Impellizzeri, D., E. Esposito, E. Mazzon, I. Paterniti, R. di Paola, P. Bramanti, V.M. Morittu, A. Procopio, D. Britti, and S. Cuzzocrea. 2011. The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy. Clinical Nutrition 30 (4): 533–540.

    Article  CAS  PubMed  Google Scholar 

  23. Andreadou, I., E.K. Iliodromitis, E. Mikros, M. Constantinou, A. Agalias, P. Magiatis, A.L. Skaltsounis, E. Kamber, A. Tsantili-Kakoulidou, and D.T. Kremastinos. 2006. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. The journal of nutrition 136 (8): 2213–2219.

    Article  CAS  PubMed  Google Scholar 

  24. Çömez, M.S., et al., Protective effect of oleuropein on ketamine-induced cardiotoxicity in rats. Naunyn-Schmiedeberg’s archives of pharmacology, 2020.

  25. MAECHLER, P., et al., Effects of olive leaf polyphenols against H2O2 toxicity in insulin secreting beta-cells. 2011.

  26. Chimento, A., I. Casaburi, C. Rosano, P. Avena, A. de Luca, C. Campana, E. Martire, M.F. Santolla, M. Maggiolini, V. Pezzi, and R. Sirianni. 2014. Oleuropein and hydroxytyrosol activate GPER/GPR 30-dependent pathways leading to apoptosis of ER-negative SKBR 3 breast cancer cells. Molecular nutrition & food research 58 (3): 478–489.

    Article  CAS  Google Scholar 

  27. Ahmadvand, H., S. Bagheri, A. Tamjidi-Poor, M. Cheraghi, M. Azadpour, B. Ezatpour, S. Moghadam, G. Shahsavari, and M. Jalalvand. 2016. Biochemical effects of oleuropein in gentamicin-induced nephrotoxicity in rats. ARYA atherosclerosis 12 (2): 87–93.

    PubMed  PubMed Central  Google Scholar 

  28. Qin, L., M. Li, H.L. Tan, H.X. Yang, S.D. Li, Z.X. Luan, Y.F. Chen, and M.H. Yang. 2020. Mechanistic target of rapamycin-mediated autophagy is involved in the alleviation of lipopolysaccharide-induced acute lung injury in rats. International Immunopharmacology 78: 105790.

    Article  CAS  PubMed  Google Scholar 

  29. Andreadou, I., F. Sigala, E.K. Iliodromitis, M. Papaefthimiou, C. Sigalas, N. Aligiannis, P. Savvari, V. Gorgoulis, E. Papalabros, and D.T. Kremastinos. 2007. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. Journal of molecular and cellular cardiology 42 (3): 549–558.

    Article  CAS  PubMed  Google Scholar 

  30. Redinbaugh, M.G., and R.B. Turley. 1986. Adaptation of the bicinchoninic acid protein assay for use with microtiter plates and sucrose gradient fractions. Analytical biochemistry 153 (2): 267–271.

    Article  CAS  PubMed  Google Scholar 

  31. Saadat, S., F. Beheshti, V.R. Askari, M. Hosseini, N. Mohamadian Roshan, and M.H. Boskabady. 2019. Aminoguanidine affects systemic and lung inflammation induced by lipopolysaccharide in rats. Respiratory research 20 (1): 96.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Placer, Z.A., L.L. Cushman, and B.C. Johnson. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical biochemistry 16 (2): 359–364.

    Article  CAS  PubMed  Google Scholar 

  33. Sedlak, J., and R.H. Lindsay. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical biochemistry 25: 192–205.

    Article  CAS  PubMed  Google Scholar 

  34. Lawrence, R.A., and R.F. Burk. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and biophysical research communications 71 (4): 952–958.

    Article  CAS  PubMed  Google Scholar 

  35. Aebi, H., Catalase. Methods of enzymatic analysis, 1983.

  36. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of biological chemistry 193: 265–275.

    Article  CAS  Google Scholar 

  37. Smith, K.M., J.D. Mrozek, S.C. Simonton, D.R. Bing, P.A. Meyers, J.E. Connett, and M.C. Mammel. 1997. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome. Critical care medicine 25 (11): 1888–1897.

    Article  CAS  PubMed  Google Scholar 

  38. Fenton, M.J., and D.T. Golenbock. 1998. LPS-binding proteins and receptors. Journal of leukocyte biology 64 (1): 25–32.

    Article  CAS  PubMed  Google Scholar 

  39. Szarka, R.J., N. Wang, L. Gordon, P.N. Nation, and R.H. Smith. 1997. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. Journal of immunological methods 202 (1): 49–57.

    Article  CAS  PubMed  Google Scholar 

  40. Thangavel, J., S. Samanta, S. Rajasingh, B. Barani, Y.T. Xuan, B. Dawn, and J. Rajasingh. 2015. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. Journal of cell science 128 (16): 3094–3105.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. KL, B., and B. Meyrick. 1986. Endotoxin and lung injury. Am Rev Respir Dis 133: 913–927.

    Google Scholar 

  42. Martin, M.A., and H.J. Silverman. 1992. Gram-negative sepsis and the adult respiratory distress syndrome. Clinical infectious diseases 14 (6): 1213–1228.

    Article  CAS  PubMed  Google Scholar 

  43. Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. The Journal of clinical investigation 122 (8): 2731–2740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular medicine 17 (3-4): 293–307.

    Article  CAS  PubMed  Google Scholar 

  45. Abraham, E. 2003. Neutrophils and acute lung injury. Critical care medicine 31 (4): S195–S199.

    Article  PubMed  Google Scholar 

  46. Jing, W., M. Chunhua, and W. Shumin. 2015. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro. Toxicology and Applied Pharmacology 285 (2): 128–135.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, H., J. Sha, X. Feng, X. Hu, Y. Chen, B. Li, and H. Fan. 2019. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3β/STAT3-NF-κB signaling pathway in rats. International Immunopharmacology 74: 105717.

    Article  CAS  PubMed  Google Scholar 

  48. Müller-Redetzky, H.C., N. Suttorp, and M. Witzenrath. 2014. Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell and tissue research 355 (3): 657–673.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Di Meo, S., et al. 2016. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative medicine and cellular longevity 2016.

  50. Mokhtari-Zaer, A., F. Norouzi, V.R. Askari, M.R. Khazdair, N.M. Roshan, M. Boskabady, M. Hosseini, and M.H. Boskabady. 2020. The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. Journal of Ethnopharmacology 253: 112653.

    Article  CAS  PubMed  Google Scholar 

  51. Ye, J., M. Guan, Y. Lu, D. Zhang, C. Li, and C. Zhou. 2019. Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulmonary pharmacology & therapeutics 54: 53–59.

    Article  CAS  Google Scholar 

  52. Jingyan, L., G. Yujuan, Y. Yiming, Z. Lingpeng, Y. Tianhua, and M. Mingxing. 2017. Salidroside attenuates LPS-induced acute lung injury in rats. Inflammation 40 (5): 1520–1531.

    Article  PubMed  Google Scholar 

  53. Baradaran Rahimi, V., H. Rakhshandeh, F. Raucci, B. Buono, R. Shirazinia, A. Samzadeh Kermani, F. Maione, N. Mascolo, and V.R. Askari. 2019. Anti-inflammatory and anti-oxidant activity of Portulaca oleracea extract on LPS-induced rat lung injury. Molecules 24 (1): 139.

    Article  PubMed Central  Google Scholar 

  54. Cinar, I., B. Sirin, P. Aydin, E. Toktay, E. Cadirci, I. Halici, and Z. Halici. 2019. Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life sciences 221: 327–334.

    Article  CAS  PubMed  Google Scholar 

  55. Motawea, M.H., H.A. Abd Elmaksoud, M.G. Elharrif, A.A.E. Desoky, and A. Ibrahimi. 2020. Evaluation of anti-inflammatory and antioxidant profile of oleuropein in experimentally induced ulcerative colitis. International Journal of Molecular and Cellular Medicine 9 (3): 224–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Alsharif, K.F., A.A. Almalki, O. al-Amer, A.H. Mufti, A. Theyab, M.S. Lokman, S.S. Ramadan, R.S. Almeer, M.M. Hafez, R.B. Kassab, and A.E. Abdel Moneim. 2020. Oleuropein protects against lipopolysaccharide-induced sepsis and alleviates inflammatory responses in mice. IUBMB life 72 (10): 2121–2132.

    Article  CAS  PubMed  Google Scholar 

  57. Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants & redox signaling 20 (7): 1126–1167.

    Article  CAS  Google Scholar 

  58. Biswas, S.K., Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative medicine and cellular longevity, 2016. 2016.

  59. Minamino, T., and I. Komuro. 2006. Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury. The Journal of clinical investigation 116 (9): 2316–2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paladino, J., J. Hotchkiss, and H. Rabb. 2009. Acute kidney injury and lung dysfunction: a paradigm for remote organ effects of kidney disease? Microvascular research 77 (1): 8–12.

    Article  CAS  PubMed  Google Scholar 

  61. Fan, J., R.D. Ye, and A.B. Malik. 2001. Transcriptional mechanisms of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 281 (5): L1037–L1050.

    Article  CAS  PubMed  Google Scholar 

  62. Blackwell, T.S., T.R. Blackwell, E.P. Holden, B.W. Christman, and J.W. Christman. 1996. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. The Journal of Immunology 157 (4): 1630–1637.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Y., Z. du, Q. Zhou, Y. Wang, and J. Li. 2014. Remifentanil attenuates lipopolysaccharide-induced acute lung injury by downregulating the NF-κB signaling pathway. Inflammation 37 (5): 1654–1660.

    Article  CAS  PubMed  Google Scholar 

  64. Geyikoglu, F., H. Isikgoz, H. Onalan, S. Colak, S. Cerig, M. Bakir, M. Hosseinigouzdagani, K. Koc, H.S. Erol, Y.S. Saglam, and S. Yildirim. 2017. Impact of high-dose oleuropein on cisplatin-induced oxidative stress, genotoxicity and pathological changes in rat stomach and lung. Journal of Asian natural products research 19 (12): 1214–1231.

    Article  CAS  PubMed  Google Scholar 

  65. Erol, H., et al. 2020. The effects of oleuropein on lung and heart injury in cecal ligation and puncture-induced sepsis. Eurasian Journal of Veterinary Sciences 36: 221–231.

    Article  Google Scholar 

  66. Meng, L., L. Li, S. Lu, K. Li, Z. Su, Y. Wang, X. Fan, X. Li, and G. Zhao. 2018. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Molecular immunology 94: 7–17.

    Article  CAS  PubMed  Google Scholar 

  67. Ashbaugh, D., D. Boyd Bigelow, T.L. Petty, and B.E. Levine. 1967. Acute respiratory distress in adults. The Lancet 290 (7511): 319–323.

    Article  Google Scholar 

  68. Ichikado, K., M. Suga, Y. Gushima, T. Johkoh, K. Iyonaga, T. Yokoyama, O. Honda, Y. Shigeto, S. Tomiguchi, M. Takahashi, H. Itoh, J. Ikezoe, N.L. Müller, and M. Ando. 2000. Hyperoxia-induced diffuse alveolar damage in pigs: correlation between thin-section CT and histopathologic findings. Radiology 216 (2): 531–538.

    Article  CAS  PubMed  Google Scholar 

  69. Pelosi, P., et al., Pulmonary and extrapulmonary acute respiratory distress syndrome are different. European Respiratory Journal, 2003. 22(42 suppl): p. 48s-56s.

  70. Wu, G., X.P. dai, X.R. Li, and H.P. Jiang. 2017. Antioxidant and anti-inflammatory effects of Rhamnazin on lipopolysaccharide-induced acute lung injury and inflammation in rats. African Journal of Traditional, Complementary and Alternative Medicines 14 (4): 201–212.

    Article  CAS  Google Scholar 

  71. Gao, P., et al. 2018. The therapeutic effects of traditional Chinese medicine Fusu agent in LPS-induced acute lung injury model rats. Drug Design, Development and Therapy 12: 3867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the Scientific Research Projects Coordination of Hatay Mustafa Kemal University (project number: 20.M.020).

Author information

Authors and Affiliations

Authors

Contributions

ND: project administration, funding acquisition, methodology, conceptualization, writing—review and editing, supervision. MG: methodology, formal analysis, investigation, writing—original draft. AU: methodology, formal analysis, resources, investigation. MC: validation, resources, investigation. CTİ: formal analysis, resources, investigation. TA: formal analysis, validation, investigation. ME: methodology, visualization, investigation.

Corresponding author

Correspondence to Nursel Dikmen.

Ethics declarations

Ethics Approval and Consent to Participate

This study was approved by Hatay Mustafa Kemal University Animal Experiments Local Ethics Committee (approval no. 2020/02-17).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikmen, N., Cellat, M., Etyemez, M. et al. Ameliorative Effects of Oleuropein on Lipopolysaccharide-Induced Acute Lung Injury Model in Rats. Inflammation 44, 2246–2259 (2021). https://doi.org/10.1007/s10753-021-01496-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01496-x

KEY WORDS

Navigation