Skip to main content
Log in

Sargahydroquinoic Acid, a Cyclooxygenase-2 Inhibitor, Attenuates Inflammatory Responses by Regulating NF-κB Inactivation and Nrf2 Activation in Lipopolysaccharide-Stimulated Cells

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sargahydroquinoic acid (SHQA) is a major plastoquinone in Sargassum macrocarpum and has shown the capacity to prevent inflammation and oxidative stress. However, the protective mechanisms were unclear. The molecular mechanisms of SHQA on ameliorating inflammation and oxidative stress have been investigated, using lipopolysaccharide (LPS)-stimulated macrophages. SHQA was isolated and purified from S. macrocarpum and the anti-inflammatory mechanisms were explored using LPS-stimulated murine macrophage RAW 264.7 cells. SHQA did not change the expression of cyclooxygenase-2 (COX-2) but inhibited the activity of COX-2. As a result, SHQA significantly diminished the secretions of nitric oxide (NO), prostaglandin E2 (PGE2), and multiple pro-inflammatory cytokines. LPS-induced activation of nuclear factor-κB (NF-κB) was inhibited by SHQA by preventing the degradation of inhibitor κB-α (IκBα). NF-κB activation was also downregulated by the inhibition of Akt phosphorylation in LPS-stimulated cells. Furthermore, SHQA induced the expression of heme oxygenase 1 via Nrf2 activation. These results indicated that SHQA inhibited LPS-induced expressions of inflammatory mediators via suppressing the Akt-mediated NF-κB pathway as well as upregulating the Nrf2/HO-1 pathway. Our findings suggest that SHQA might be a potential therapeutic agent in various inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Code Availability

None.

Abbreviations

Akt:

Phosphatidylinositol 3-kinase (PI3K)/protein kinase B

BSA:

Bovine serum albumin

COX-2:

Cyclooxygenase 2

DAPI:

4,6′-Diamidino-2-phenylindole

DCF-DA:

4,6′-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

ECL:

Enhanced chemiluminescence

ELISA:

Enzyme-linked immunosorbent assay

ERK:

Extracellular signal-regulated kinase

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HMBC:

Heteronuclear multiple bond correlation

HMQC:

Heteronuclear multiple quantum correlation

HO-1:

Heme oxygenase 1

IL-1β:

Interleukin-1 β

IL-6:

Interleukin-6

IκB-α:

Inhibitor of κB-α

IKK:

Inhibitory κB kinase

iNOS:

Inducible nitric oxide synthase

JNK:

c-Jun NH2-terminal kinase

LPS:

Lipopolysaccharide

MAPKs:

Mitogen-activated protein kinases

NF-κB:

Nuclear factor-κB

NO:

Nitric oxide

Nrf2:

Nuclear transcription factor-E2-related factor 2

PBS:

Phosphate-buffered saline

PGE2 :

Prostaglandin E2

PMSF:

Phenylmethylsulfonyl fluoride

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TBST:

Tris-buffered saline with 0.05% Tween 20

TNF-α:

Tumor necrosis factor-alpha

References

  1. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13 (2): 85–94.

    Article  CAS  PubMed  Google Scholar 

  2. Xie, Q., R. Whisnant, and C. Nathan. 1993. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. The Journal of Experimental Medicine 177 (6): 1779–1784.

    Article  CAS  PubMed  Google Scholar 

  3. Marks-Konczalik, J., S.C. Chu, and J. Moss. 1998. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kappaB-binding sites. The Journal of Biological Chemistry 273 (35): 22201–22208.

    Article  CAS  PubMed  Google Scholar 

  4. Vane, J.R., J.A. Mitchell, I. Appleton, A. Tomlinson, D. Bishop-Bailey, J. Croxtall, and D.A. Willoughby. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proceedings of the National Academy of Sciences of the United States of America 91 (6): 2046–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Libby, P. 2006. Inflammation and cardiovascular disease mechanisms. The American Journal of Clinical Nutrition 83 (2): 456S–460S.

    Article  CAS  PubMed  Google Scholar 

  6. Solinas, G., F. Marchesi, C. Garlanda, A. Mantovani, and P. Allavena. 2010. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Reviews 29 (2): 243–248.

    Article  CAS  PubMed  Google Scholar 

  7. Jean-Gilles, D., L. Li, H. Ma, T. Yuan, C.O. Chichester III, and N.P. Seeram. 2012. Anti-inflammatory effects of polyphenolic-enriched red raspberry extract in an antigen-induced arthritis rat model. Journal of Agricultural and Food Chemistry 60 (23): 5755–5762.

    Article  CAS  PubMed  Google Scholar 

  8. Ivashkiv, L.B. 2011. Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. European Journal of Immunology 41 (9): 2477–2481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan, M.H., H.M. Hong, C.L. Lin, A.Z. Jhang, J.H. Tsai, V. Badmaev, K. Nagabhushanam, C.T. Ho, and W.J. Chen. 2011. Se-methylselenocysteine inhibits lipopolysaccharide-induced NF-kappaB activation and iNOS induction in RAW 264.7 murine macrophages. Molecular Nutrition & Food Research 55 (5): 723–732.

    Article  CAS  Google Scholar 

  10. Alvira, C.M. 2014. Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. Birth Defects Research. Part A, Clinical and Molecular Teratology 100 (3): 202–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barnes, P.J., and M. Karin. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine 336 (15): 1066–1071.

    Article  CAS  PubMed  Google Scholar 

  12. Vanden Berghe, W., et al. 1998. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. The Journal of Biological Chemistry 273 (6): 3285–3290.

    Article  Google Scholar 

  13. Chen, H.G., K.L. Xie, H.Z. Han, W.N. Wang, D.Q. Liu, G.L. Wang, and Y.H. Yu. 2013. Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages. International Journal of Surgery 11 (10): 1060–1066.

    Article  PubMed  Google Scholar 

  14. Lee, J.W., C.J. Bae, Y.J. Choi, S.I. Kim, Y.S. Kwon, H.J. Lee, S.S. Kim, and W. Chun. 2014. 3,4,5-trihydroxycinnamic acid inhibits lipopolysaccharide (LPS)-induced inflammation by Nrf2 activation in vitro and improves survival of mice in LPS-induced endotoxemia model in vivo. Molecular and Cellular Biochemistry 390 (1-2): 143–153.

    Article  CAS  PubMed  Google Scholar 

  15. Otterbein, L.E., F.H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R.J. Davis, R.A. Flavell, and A.M.K. Choi. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Medicine 6 (4): 422–428.

    Article  CAS  PubMed  Google Scholar 

  16. Wiesel, P., L.C. Foster, A. Pellacani, M.D. Layne, C.M. Hsieh, G.S. Huggins, P. Strauss, S.F. Yet, and M.A. Perrella. 2000. Thioredoxin facilitates the induction of heme oxygenase-1 in response to inflammatory mediators. The Journal of Biological Chemistry 275 (32): 24840–24846.

    Article  CAS  PubMed  Google Scholar 

  17. Suh, G.Y., Y. Jin, A.K. Yi, X.M. Wang, and A.M.K. Choi. 2006. CCAAT/enhancer-binding protein mediates carbon monoxide-induced suppression of cyclooxygenase-2. American Journal of Respiratory Cell and Molecular Biology 35 (2): 220–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oh, G.S., H.O. Pae, B.S. Lee, B.N. Kim, J.M. Kim, H.R. Kim, S.B. Jeon, W.K. Jeon, H.J. Chae, and H.T. Chung. 2006. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radical Biology & Medicine 41 (1): 106–119.

    Article  CAS  Google Scholar 

  19. Nguyen, T., P. Nioi, and C.B. Pickett. 2009. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry 284 (20): 13291–13295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heo, S.J., S.H. Cha, K.N. Kim, S.H. Lee, G. Ahn, D.H. Kang, C. Oh, Y.U. Choi, A. Affan, D. Kim, and Y.J. Jeon. 2012. Neuroprotective effect of phlorotannin isolated from Ishige okamurae against H(2)O(2)-induced oxidative stress in murine hippocampal neuronal cells, HT22. Applied Biochemistry and Biotechnology 166 (6): 1520–1532.

    Article  CAS  PubMed  Google Scholar 

  21. Park, B.G., W.S. Shin, Y. Um, S. Cho, G.M. Park, D.S. Yeon, S.C. Kwon, J. Ham, B.W. Choi, and S. Lee. 2008. Selective vasodilatation effect of sargahydroquinoic acid, an active constituent of Sargassum micracanthum, on the basilar arteries of rabbits. Bioorganic & Medicinal Chemistry Letters 18 (8): 2624–2627.

    Article  CAS  Google Scholar 

  22. Jeon, Y., Y. Jung, M.C. Kim, H.C. Kwon, K.S. Kang, Y.K. Kim, and S.N. Kim. 2014. Sargahydroquinoic acid inhibits TNFalpha-induced AP-1 and NF-kappaB signaling in HaCaT cells through PPARalpha activation. Biochemical and Biophysical Research Communications 450 (4): 1553–1559.

    Article  CAS  PubMed  Google Scholar 

  23. Joung, E.-J., W.G. Gwon, T. Shin, B.M. Jung, J.S. Choi, and H.R. Kim. 2017. Anti-inflammatory action of the ethanolic extract from Sargassum serratifolium on lipopolysaccharide-stimulated mouse peritoneal macrophages and identification of active components. Journal of Applied Phycology 29 (1): 563–573.

    Article  CAS  Google Scholar 

  24. Lim, S., et al., Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. 2019. 278: p. 178-184.

  25. Joung, E.J., B. Lee, W.G. Gwon, T. Shin, B.M. Jung, N.Y. Yoon, J.S. Choi, C.W. Oh, and H.R. Kim. 2015. Sargaquinoic acid attenuates inflammatory responses by regulating NF-kappaB and Nrf2 pathways in lipopolysaccharide-stimulated RAW 264.7 cells. International Immunopharmacology 29 (2): 693–700.

    Article  CAS  PubMed  Google Scholar 

  26. Gwon, W.-G., E.J. Joung, T. Shin, T. Utsuki, N. Wakamatsu, and H.R. Kim. 2018. Meroterpinoid-rich fraction of the ethanol extract from Sargassum serratifolium suppresses TNF-α-induced monocytes adhesion to vascular endothelium and vascular inflammation in high cholesterol-fed C57BL/6J mice. Journal of Functional Foods 46: 384–393.

    Article  CAS  Google Scholar 

  27. Wang, W., P. Liu, C. Hao, L. Wu, W. Wan, and X. Mao. 2017. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-kappaB pathways. Scientific Reports 7: 44252.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Joung, E.J., M.S. Lee, J.W. Choi, J.S. Kim, T. Shin, B.M. Jung, J.I. Kim, and H.R. Kim. 2012. Anti-inflammatory effects of phlorofucofuroeckol B-rich ethyl acetate fraction obtained from Myagropsis myagroides on lipopolysaccharide-stimulated RAW 264.7 cells and mouse edema. International Immunopharmacology 14 (4): 471–480.

    Article  CAS  PubMed  Google Scholar 

  29. Norberg, J.K., E. Sells, H.H. Chang, S.R. Alla, S. Zhang, and E.J. Meuillet. 2013. Targeting inflammation: multiple innovative ways to reduce prostaglandin E(2). Pharm Pat Anal 2 (2): 265–288.

    Article  CAS  PubMed  Google Scholar 

  30. Niu, X., Q. Mu, W. Li, H. Yao, H. Li, and H. Huang. 2014. Esculentic acid, a novel and selective COX-2 inhibitor with anti-inflammatory effect in vivo and in vitro. European Journal of Pharmacology 740: 532–538.

    Article  CAS  PubMed  Google Scholar 

  31. Hanada, T., and A. Yoshimura. 2002. Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Reviews 13 (4-5): 413–421.

    Article  CAS  Google Scholar 

  32. Packard, R.R., and P. Libby. 2008. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clinical Chemistry 54 (1): 24–38.

    Article  CAS  PubMed  Google Scholar 

  33. Karin, M., and A. Lin. 2002. NF-kappaB at the crossroads of life and death. Nature Immunology 3 (3): 221–227.

    Article  CAS  PubMed  Google Scholar 

  34. Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews. Immunology 2 (10): 725–734.

    Article  CAS  PubMed  Google Scholar 

  35. Kanarek, N., and Y. Ben-Neriah. 2012. Regulation of NF-kappaB by ubiquitination and degradation of the IkappaBs. Immunological Reviews 246 (1): 77–94.

    Article  PubMed  CAS  Google Scholar 

  36. Karin, M., and M. Delhase. 2000. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Seminars in Immunology 12 (1): 85–98.

    Article  CAS  PubMed  Google Scholar 

  37. Kundu, J.K., Y.K. Shin, and Y.J. Surh. 2006. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets. Biochemical Pharmacology 72 (11): 1506–1515.

    Article  CAS  PubMed  Google Scholar 

  38. Ryter, S.W., and A.M. Choi. 2016. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Translational Research 167 (1): 7–34.

    Article  CAS  PubMed  Google Scholar 

  39. Paine, A., B. Eiz-Vesper, R. Blasczyk, and S. Immenschuh. 2010. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochemical Pharmacology 80 (12): 1895–1903.

    Article  CAS  PubMed  Google Scholar 

  40. Lee, I.S., J. Lim, J. Gal, J.C. Kang, H.J. Kim, B.Y. Kang, and H.J. Choi. 2011. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochemistry International 58 (2): 153–160.

    Article  CAS  PubMed  Google Scholar 

  41. Qin, S., and D.X. Hou. 2016. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Molecular Nutrition & Food Research 60 (8): 1731–1755.

    Article  CAS  Google Scholar 

  42. Wu, W., Y. Li, Y. Wu, Y. Zhang, Z. Wang, and X. Liu. 2015. Lutein suppresses inflammatory responses through Nrf2 activation and NF-kappaB inactivation in lipopolysaccharide-stimulated BV-2 microglia. Molecular Nutrition & Food Research 59 (9): 1663–1673.

    Article  CAS  Google Scholar 

  43. Wardyn, J.D., A.H. Ponsford, and C.M. Sanderson. 2015. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochemical Society Transactions 43 (4): 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buelna-Chontal, M., and C. Zazueta. 2013. Redox activation of Nrf2 & NF-kappaB: a double end sword? Cellular Signalling 25 (12): 2548–2557.

    Article  CAS  PubMed  Google Scholar 

  45. Bonizzi, G., and M. Karin. 2004. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends in Immunology 25 (6): 280–288.

    Article  CAS  PubMed  Google Scholar 

  46. de Vries, H.E., M. Witte, D. Hondius, A.J.M. Rozemuller, B. Drukarch, J. Hoozemans, and J. van Horssen. 2008. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radical Biology & Medicine 45 (10): 1375–1383.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1I1A3A0105969012).

Author information

Authors and Affiliations

Authors

Contributions

E.J., L.C., B.L., W.G., S.P., and H.K. conceived and planned the experiments. E.J. and W.G. performed the experiments and analyzed the data. L.C., B.L., and S.P were major contributors in writing the manuscript. H.K. supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hyeung-Rak Kim.

Ethics declarations

Ethics Approval

The authors confirm that any aspect of the work covered in this manuscript that has involved experimental animals has been conducted with approvals by the Animal Ethics Committee of the Pukyong National University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joung, EJ., Cao, L., Lee, B. et al. Sargahydroquinoic Acid, a Cyclooxygenase-2 Inhibitor, Attenuates Inflammatory Responses by Regulating NF-κB Inactivation and Nrf2 Activation in Lipopolysaccharide-Stimulated Cells. Inflammation 44, 2120–2131 (2021). https://doi.org/10.1007/s10753-021-01488-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01488-x

KEY WORDS

Navigation