Skip to main content

Advertisement

Log in

Amelioration of Juglanin against LPS-Induced Activation of NLRP3 Inflammasome in Chondrocytes Mediated by SIRT1

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Arthritis is characterized by irreversible joint destruction and presents a global health burden. Natural alternatives to synthetic drugs have been gaining popularity for their safety and effectiveness. Juglanin has demonstrated a range of anti-inflammatory effects in various tissues and cell types. However, the pharmacological function of Juglanin in arthritis and chondrocytes has been little studied. ATDC5 cells were treated with 1 μg/mL lipopolysaccharide (LPS) in the presence or absence of juglanin (2.5, 5 μM) for 24 h. The effects of juglanin on cellular nucleotide-binding domain leucin-rich repeat receptor 3 (NLRP3) inflammasome complex and endproduct interleukin 1β (IL-1β) and interleukin (IL-18) were assessed by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot experiments. The oxidative stress was measured by super oxide dismutase (SOD) activity and NADPH oxidase 4 (NOX4) expression. The dependent effect of juglanin on silent information regulator 2 homolog 1 (SIRT1) was evaluated by siRNA knockdown approach. Juglanin significantly reduced cellular oxidative stress by downregulating NOX4 expression production and rescuing the decreased activity of total SOD induced by LPS. Juglanin inhibited the activation of the TxNIP/NLRP3/ASC/caspase-1 axis, and decreased production of IL-1β and IL-18. Moreover, juglanin rescued the LPS-induced decrease in SIRT1 expression. SIRT1 silencing abolished the anti-NLRP3 inflammasome effect of juglanin, indicating that the effects of juglanin are dependent on its amelioration on SIRT1 expression. Juglanin possesses an anti-inflammatory and anti-ROS capacity in chondrocytes, and this study provides available evidence that juglanin may be of use in the treatment of arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Khan, N.M., A. Haseeb, M.Y. Ansari, P. Devarapalli, S. Haynie, and T.M. Haqqi. 2017. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radical Biology and Medicine. 106: 288–301.

    Article  CAS  Google Scholar 

  2. Singh, P., K.B. Marcu, M.B. Goldring, and M. Otero. 2019. Phenotypic instability of chondrocytes in osteoarthritis: On a path to hypertrophy. Annals of the New York Academy of Sciences. 1442 (1): 17–34.

    Article  CAS  Google Scholar 

  3. Zhuang, Z., G. Ye, and B. Huang. 2017. Kaempferol alleviates the interleukin-1β-induced inflammation in rat osteoarthritis chondrocytes via suppression of NF-κB. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 23: 3925–3931.

    Article  Google Scholar 

  4. Dreier, R. 2010. Hypertrophic differentiation of chondrocytes in osteoarthritis: The developmental aspect of degenerative joint disorders. Arthritis research & therapy. 12 (5): 216.

    Article  Google Scholar 

  5. Bauernfeind, F.G., G. Horvath, A. Stutz, E.S. Alnemri, K. MacDonald, D. Speert, Z. Huang, T. Stabler, F. Pei, and V. Kraus. 2016. Both systemic and local lipopolysaccharide (LPS) burden is associated with knee osteoarthritis (OA). Osteoarthritis and Cartilage. 24: S329–S330.

    Google Scholar 

  6. Coant, N., M. Simon-Rudler, T. Gustot, M. Fasseu, S. Gandoura, K. Ragot, W. Abdel-Razek, D. Thabut, P. Lettéron, E. Ogier-Denis, and R. Ouziel. 2011. Glycogen synthase kinase 3 involvement in the excessive proinflammatory response to LPS in patients with decompensated cirrhosis. Journal of hepatology. 55 (4): 784–793.

    Article  CAS  Google Scholar 

  7. Luo, X., J. Wang, X. Wei, S. Wang, and A. Wang. 2019. Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccharide-induced osteoarthritis progression by miR-130a-3p/TCF4. Life sciences. 117019.

  8. Fernandes-Alnemri, T., J. Wu, B.G. Monks, K.A. Fitzgerald, and V. Hornung. 2009. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. The Journal of Immunology. 183 (2): 787–791.

    Article  Google Scholar 

  9. X. Yu, P. Lan, X. Hou, Q. Han, N. Lu, T. Li, C. Jiao, J. Zhang, C. Zhang, Z. Tian HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. Journal of hepatology. 2017;66(4):693–702.

  10. Lepetsos, P., and A.G. Papavassiliou. 2016. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta 1862 (4): 576–591.

    Article  CAS  Google Scholar 

  11. Drevet, S., G. Gavazzi, L. Grange, C. Dupuy, and B. Lardy. 2018. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis. Experimental gerontology. 111: 107–117.

    Article  CAS  Google Scholar 

  12. Clavijo-Cornejo, D., K. Martínez-Flores, K. Silva-Luna, G.A. Martínez-Nava, J. Fernández-Torres, Y. Zamudio-Cuevas, M. Guadalupe Santamaría-Olmedo, J. Granados-Montiel, C. Pineda, and A. López-Reyes. 2016. The overexpression of NALP3 inflammasome in knee osteoarthritis is associated with synovial membrane prolidase and NADPH oxidase 2. Oxidative Medicine and Cellular Longevity 2016: 1472567.

    Article  Google Scholar 

  13. Tiku, M.L., S. Gupta, and D.R. Deshmukh. 1999. Aggrecan degradation in chondrocytes is mediated by reactive oxygen species and protected by antioxidants. Free Radical Research 30 (5): 395–405.

    Article  CAS  Google Scholar 

  14. Mitroulis, I., P. Skendros, and K. Ritis. 2010. Targeting IL-1β in disease; the expanding role of NLRP3 inflammasome. European journal of internal medicine. 21 (3): 157–163.

    Article  CAS  Google Scholar 

  15. Jiao, P., W. Li, L. Shen, Y. Li, L. Yu, and Z. Liu. 2020. The protective effect of doxofylline against lipopolysaccharides (LPS)-induced activation of NLRP3 inflammasome is mediated by SIRT1 in human pulmonary bronchial epithelial cells. Artif Cells Nanomed Biotechnol. 48 (1): 687–694.

    Article  CAS  Google Scholar 

  16. Chen, H., J. Qi, Q. Bi, and S. Zhang. 2017. Suppression of miR-301a alleviates LPS-induced inflammatory injury in ATDC5 chondrogenic cells by targeting Sirt1. International Journal of Clinical and Experimental Pathology 10: 8991–9000.

    PubMed  PubMed Central  Google Scholar 

  17. Zheng, W., Z. Feng, S. You, H. Zhang, Z. Tao, Q. Wang, H. Chen, and Y. Wu. 2017. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. International Immunopharmacology 45: 135–147.

    Article  CAS  Google Scholar 

  18. Jamali-Raeufy, N., S. Kardgar, T. Baluchnejadmojarad, M. Roghani, and M. Goudarzi. 2019. Troxerutin exerts neuroprotection against lipopolysaccharide (LPS) induced oxidative stress and neuroinflammation through targeting SIRT1/SIRT3 signaling pathway. Metabolic brain disease. 34 (5): 1505–1513.

    Article  CAS  Google Scholar 

  19. Li, Y., X. Yang, Y. He, W. Wang, J. Zhang, W. Zhang, T. Jing, B. Wang, and R. Lin. 2017. Negative regulation of NLRP3 inflammasome by SIRT1 in vascular endothelial cells. Immunobiology. 222 (3): 552–561.

    Article  CAS  Google Scholar 

  20. Bougault, C., M. Gosset, X. Houard, C. Salvat, L. Godmann, T. Pap, C. Jacques, and F. Berenbaum. 2012. Stress-induced cartilage degradation does not depend on the NLRP3 inflammasome in human osteoarthritis and mouse models. Arthritis and Rheumatism 64 (12): 3972–3981.

    Article  CAS  Google Scholar 

  21. Wang, C., Y. Gao, Z. Zhang, C. Chen, Q. Chi, K. Xu, and L. Yang. 2020. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-κB/NLRP3 inflammasome pathway and ameliorates osteoarthritis. Biomedicine & Pharmacotherapy 130: 110568.

    Article  CAS  Google Scholar 

  22. Zhou, G.Y., Y.X. Yi, L.X. Jin, W. Lin, P.P. Fang, X.Z. Lin, Y. Zheng, and C.W. Pan. 2016. The protective effect of juglanin on fructose-induced hepatitis by inhibiting inflammation and apoptosis through TLR4 and JAK2/STAT3 signaling pathways in fructose-fed rats. Biomedicine & Pharmacotherapy 81: 318–328.

    Article  CAS  Google Scholar 

  23. Chen, X., C. Zhang, X. Wang, and S. Huo. 2019. Juglanin inhibits IL-1β-induced inflammation in human chondrocytes. Artificial cells, nanomedicine, and biotechnology. 47 (1): 3614–3620.

    Article  CAS  Google Scholar 

  24. Kakkar, Z.Y.P., B. Das, and P.N. Viswanathan. 1984. A modified spectrophotometeric assay of superoxide dismutase (SOD). Ind. J. Biochem. Biophys 21: 130–132.

    CAS  Google Scholar 

  25. Li, Y., P. Wang, X. Yang, W. Wang, J. Zhang, Y. He, W. Zhang, T. Jing, B. Wang, and R. Lin. 2016. SIRT1 inhibits inflammatory response partly through regulation of NLRP3 inflammasome in vascular endothelial cells. Molecular immunology. 77: 148–156.

    Article  CAS  Google Scholar 

  26. Van Kiem, P., N.T. Mai, C. Van Minh, N.H. Khoi, N.H. Dang, N.P. Thao, N.X. Cuong, N.H. Nam, N.X. Nhiem, Y. Vander Heyden, and J. Quetin-Leclercq. 2010. Two new C-glucosyl benzoic acids and flavonoids from Mallotus nanus and their antioxidant activity. Archives of pharmacal research. 33 (2): 203–208.

    Article  CAS  Google Scholar 

  27. Torel, J., J. Cillard, and P. Cillard. 1986. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry. 25 (2): 383–385.

    Article  CAS  Google Scholar 

  28. Burda, S., and W. Oleszek. 2001. Antioxidant and antiradical activities of flavonoids. Journal of agricultural and food chemistry. 49 (6): 2774–2779.

    Article  CAS  Google Scholar 

  29. Yang, H.H., K. Hwangbo, M.S. Zheng, J.K. Son, H.Y. Kim, S.H. Baek, H.C. Choi, S.Y. Park, and J.R. Kim. 2014. Inhibitory effects of juglanin on cellular senescence in human dermal fibroblasts. Journal of natural medicines. 68 (3): 473–480.

    Article  CAS  Google Scholar 

  30. Sun, Z.L., J.L. Dong, and J. Wu. 2017. Juglanin induces apoptosis and autophagy in human breast cancer progression via ROS/JNK promotion. Biomedicine & Pharmacotherapy. 85: 303–312.

    Article  CAS  Google Scholar 

  31. Ugusman, A., Z. Zakaria, C.K. Hui, N.A. Nordin, and Z.A. Mahdy. 2012. Flavonoids of Piper sarmentosum and its cytoprotective effects against oxidative stress. EXCLI journal. 11: 705.

    PubMed  PubMed Central  Google Scholar 

  32. Lim, H., M.Y. Heo, and H.P. Kim. 2019. Flavonoids: Broad spectrum agents on chronic inflammation. Biomolecules & Therapeutics 27 (3): 241.

    Article  Google Scholar 

  33. Wang, W., Q.H. Wu, Y. Sui, Y. Wang, and X. Qiu. 2017. Rutin protects endothelial dysfunction by disturbing Nox4 and ROS-sensitive NLRP3 inflammasome. Biomedicine & Pharmacotherapy. 86: 32–40.

    Article  CAS  Google Scholar 

  34. Qu, Y., C. Wang, N. Liu, C. Gao, and F. Liu. 2018. Morin exhibits anti-inflammatory effects on IL-1β-stimulated human osteoarthritis chondrocytes by activating the Nrf2 signaling pathway. Cellular Physiology and Biochemistry. 51 (4): 1830–1838.

    Article  CAS  Google Scholar 

  35. Sun, Y., W. Liu, H. Zhang, H. Li, J. Liu, F. Zhang, T. Jiang, and S. Jiang. 2017. Curcumin prevents osteoarthritis by inhibiting the activation of inflammasome NLRP3. Journal of Interferon & Cytokine Research. 37 (10): 449–455.

    Article  CAS  Google Scholar 

  36. Tang, P., J.M. Gu, Z.A. Xie, Y. Gu, Z.W. Jie, K.M. Huang, J.Y. Wang, S.W. Fan, X.S. Jiang, and Z.J. Hu. 2018. Honokiol alleviates the degeneration of intervertebral disc via suppressing the activation of TXNIP-NLRP3 inflammasome signal pathway. Free Radical Biology and Medicine. 120: 368–379.

    Article  CAS  Google Scholar 

  37. Ayissi, V.B., A. Ebrahimi, and H. Schluesenner. 2014. Epigenetic effects of natural polyphenols: A focus on SIRT1-mediated mechanisms. Molecular nutrition & food research. 58 (1): 22–32.

    Article  CAS  Google Scholar 

  38. Dvir-Ginzberg, M., and J. Steinmeyer. 2013. Towards elucidating the role of SirT1 in osteoarthritis. Frontiers in bioscience (Landmark edition) 18: 343–355.

    Article  CAS  Google Scholar 

  39. Zhang, S., L. Jiang, F. Che, Y. Lu, Z. Xie, and H. Wang. 2017. Arctigenin attenuates ischemic stroke via SIRT1-dependent inhibition of NLRP3 inflammasome. Biochemical and biophysical research communications. 493 (1): 821–826.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Tingting Wang and Yishuo Li contributed to the study conception, experimental design, and data analysis; Tingting Wang, Jiakai Wang, and Tao Sun contributed to investigation and data collection; Yishuo Li contributed to the draft writing.

Corresponding author

Correspondence to Yishuo Li.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Consent for Publication

All authors read and approved the final manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, J., Sun, T. et al. Amelioration of Juglanin against LPS-Induced Activation of NLRP3 Inflammasome in Chondrocytes Mediated by SIRT1. Inflammation 44, 1119–1129 (2021). https://doi.org/10.1007/s10753-020-01407-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01407-6

KEY WORDS

Navigation