Skip to main content

Advertisement

Log in

ANGPTL2 Induces Synovial Inflammation via LILRB2

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Angiopoietin-like proteins (ANGPTLs) are circulating proteins that are expressed in various cells and tissues and are thought to be involved in the repair and remodeling of damaged tissues; however, ANGPTL2 hyperfunction has been shown to cause chronic inflammation, leading to the progression of various diseases. ANGPTL2 is known to exert cellular effects via receptors such as integrin α5β1 and leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2); however, their roles in ANGPTL2-induced inflammation remain unclear. In this study, we investigated the mechanisms underlying ANGPTL2-induced inflammation involving LILRB2 and various signaling pathways in human fibroblast-like synoviocytes (HFLS). The effects of ANGPTL2 and an anti-LILRB2 antibody on the gene expression of various inflammation-related factors were examined using real-time RT-PCR, while their effects on MAPK, NF-κB, and Akt phosphorylation were analyzed by western blotting. We found that the addition of ANGPTL2 enhanced the gene expression of inflammatory factors, whereas pretreatment with the anti-LILRB2 antibody for 12 h decreased the expression of these factors. Similarly, ANGPTL2 addition activated the phosphorylation of ERK, p38, JNK, NF-κB, and Akt in HFLS; however, this effect was significantly inhibited by pretreatment with the anti-LILRB2 antibody. Together, the findings of this study demonstrate that ANGPTL2 induces the expression of inflammatory factors via LILRB2 in synovial cells. Therefore, LILRB2 could be a potential therapeutic agent for treating matrix degradation in osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Loeser, Richard F., Steven R. Goldring, Carla R. Scanzello, and Mary B. Goldring. 2012. Osteoarthritis: A disease of the joint as an organ. Arthritis and Rheumatism 64: 1697–1707. https://doi.org/10.1002/art.34453.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benito, Maria J., Douglas J. Veale, Oliver Fitzgerald, Wim B. Van Den Berg, and B. Bresnihan. 2005. Synovial tissue inflammation in early and late osteoarthritis. Annals of the Rheumatic Diseases 64: 1263–1267. https://doi.org/10.1136/ard.2004.025270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blom, Arjen B., Peter L. Van Lent, Sten Libregts, Astrid E. Holthuysen, Peter M. Van Der Kraan, Nico Van Rooijen, and Wim B. Van Den Berg. 2007. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: Involvement of matrix metalloproteinase 3. Arthritis and Rheumatism 56: 147–157. https://doi.org/10.1002/art.22337.

    Article  CAS  PubMed  Google Scholar 

  4. Martel-Pelletier, Johanne, Christelle Boileau, Jean P. Pelletier, and Peter J. Roughley. 2008. Cartilage in normal and osteoarthritis conditions. Best Practice and Research: Clinical Rheumatology 22: 351–384. https://doi.org/10.1016/j.berh.2008.02.001.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, Injune, Sang-ok Moon, Keum N. Koh, Hyun Kim, Chang-sub Uhm, Hee Jin Kwak, Nam-gyun Kim, and Gou Young. 1999. Molecular cloning, expression, and characterization of angiopoietin-related protein. Journal of Biological Chemistry 274: 26523–26528.

    Article  CAS  Google Scholar 

  6. Oike, Yuichi, Masaki Akao, Kunio Yasunaga, Toshimasa Yamauchi, Tohru Morisada, Yasuhiro Ito, Takashi Urano, et al. 2005. Angiopoietin-related growth factor antagonizes obesity and insulin resistance. Nature Medicine 11: 400–408. https://doi.org/10.1038/nm1214.

    Article  CAS  PubMed  Google Scholar 

  7. Kubota, Yoshiaki, Yuichi Oike, Shinya Satoh, Yoko Tabata, Yuichi Niikura, Tohru Morisada, Masaki Akao, et al. 2005. Cooperative interaction of angiopoietin-like proteins 1 and 2 in vascular development. Proceedings of the National Academy of Sciences of the United States of America 102: 13502–13507. https://doi.org/10.1073/pnas.0501902102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hato, Tai, Mitsuhisa Tabata, and Yuichi Oike. 2008. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends in Cardiovascular Medicine 18: 6–14. https://doi.org/10.1016/j.tcm.2007.10.003.

    Article  CAS  PubMed  Google Scholar 

  9. Li, Qin, Wei Gong, Zhihong Yang, Bin Lu, Yehong Yang, Weiwei Zhao, and Hu. Renming. 2013. Serum Angptl2 levels are independently associated with albuminuria in type 2 diabetes. Diabetes Research and Clinical Practice 100: 385–390. https://doi.org/10.1016/j.diabres.2013.03.028.

    Article  CAS  PubMed  Google Scholar 

  10. Aoi, Jun, Motoyoshi Endo, Tsuyoshi Kadomatsu, Keishi Miyata, Aki Ogata, Haruki Horiguchi, Haruki Odagiri, et al. 2014. Angiopoietin-like protein 2 accelerates carcinogenesis by activating chronic inflammation and oxidative stress. Molecular Cancer Research 12: 239–249. https://doi.org/10.1158/1541-7786.MCR-13-0336.

    Article  CAS  PubMed  Google Scholar 

  11. Ogata, Aki, Motoyoshi Endo, Jun Aoi, Otowa Takahashi, Tsuyoshi Kadomatsu, Keishi Miyata, Zhe Tian, et al. 2012. The role of angiopoietin-like protein 2 in pathogenesis of dermatomyositis. Biochemical and Biophysical Research Communications 418: 494–499. https://doi.org/10.1016/j.bbrc.2012.01.052.

    Article  CAS  PubMed  Google Scholar 

  12. Toyono, Tetsuya, Tomohiko Usui, Seiichi Yokoo, Mikiko Kimakura, Suguru Nakagawa, Satoru Yamagami, Keishi Miyata, Yuichi Oike, and Shiro Amano. 2013. Angiopoietin-like protein 2 is a potent hemangiogenic and lymphangiogenic factor in corneal inflammation. Investigative Ophthalmology and Visual Science 54: 4278–4285. https://doi.org/10.1167/iovs.12-11497.

    Article  CAS  PubMed  Google Scholar 

  13. Thorin-Trescases, Nathalie, and Eric Thorin. 2014. Angiopoietin-like-2: A multifaceted protein with physiological and pathophysiological properties. Studies in Second Language Acquisition 16: 1–17. https://doi.org/10.1017/erm.2014.19.

    Article  CAS  Google Scholar 

  14. Oike, Yuichi, Zhe Tian, Keishi Miyata, Jun Morinaga, Motoyoshi Endo, and Tsuyoshi Kadomatsu. 2017. ANGPTL2: A new causal player in accelerating heart disease development in the aging. Circulation Journal 81: 1379–1385. https://doi.org/10.1253/circj.CJ-17-0854.

    Article  CAS  PubMed  Google Scholar 

  15. Horiguchi, Haruki, Motoyoshi Endo, Kohki Kawane, Tsuyoshi Kadomatsu, Kazutoyo Terada, Jun Morinaga, Kimi Araki, Keishi Miyata, and Yuichi Oike. 2017. ANGPTL 2 expression in the intestinal stem cell niche controls epithelial regeneration and homeostasis. The EMBO Journal 36: 409–424. 10.15252/embj.201695690.

  16. Sasaki, Yusuke, Masayuki Ohta, Dhruv Desai, Jose L. Figueiredo, Mary C. Whelan, Tomohiro Sugano, Masaki Yamabi, et al. 2015. Angiopoietin like protein 2 (ANGPTL2) promotes adipose tissue macrophage and T lymphocyte accumulation and leads to insulin resistance. PLoS ONE 10: 1–18. https://doi.org/10.1371/journal.pone.0131176.

    Article  CAS  Google Scholar 

  17. Tabata, Mitsuhisa, Tsuyoshi Kadomatsu, Shigetomo Fukuhara, Keishi Miyata, Yasuhiro Ito, Motoyoshi Endo, Takashi Urano, et al. 2009. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metabolism 10: 178–188. https://doi.org/10.1016/j.cmet.2009.08.003.

    Article  CAS  PubMed  Google Scholar 

  18. Sugimoto, Kazuki, Takayuki Nakamura, Takuya Tokunaga, Yusuke Uehara, Tatsuya Okada, Takuya Taniwaki, Toru Fujimoto, Yuichi Oike, and Eiichi Nakamura. 2019. Angiopoietin-like protein 2 induces synovial inflammation in the facet joint leading to degenerative changes via interleukin-6 secretion. Asian Spine Journal 13: 368–376. 10.31616/asj.2018.0178.

  19. Takano, Mami, Naoto Hirose, Chikako Sumi, Makoto Yanoshita, Sayuri Nishiyama, Azusa Onishi, Yuki Asakawa, and Kotaro Tanimoto. 2019. ANGPTL2 promotes inflammation via integrin α5β1 in chondrocytes. Cartilage. https://doi.org/10.1177/1947603519878242.

  20. Colonna, Marco, Jacqueline Samaridis, Marina Cella, Lena Angman, Rachel L. Allen, Chris A. O’Callaghan, Rod Dunbar, Graham S. Ogg, Vincenzo Cerundolo, and Antonius Rolink. 1998. Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. Journal of Immunology 160: 3096–3100.

    CAS  Google Scholar 

  21. Wagtmann, Nicolai, Susana Rojo, Evan Eichler, Harvey Mohrenweiser, and Eric O. Long. 1997. A new human gene complex encoding the killer cell inhibitory receptors and related monocyte/macrophage receptors. Current Biology 7: 615–618. https://doi.org/10.1016/s0960-9822(06)00263-6.

    Article  CAS  PubMed  Google Scholar 

  22. Chang, C.C., Ciubotariu Rodica, J.S. Manavalan, Jianda Yuan, and Adriana. I. Colovai, Flavia Piazza, Seth Lederman, et al. 2002. Tolerization of dendritic cells by Ts cells: The crucial role of inhibitory receptors ILT3 and ILT4. Nature Immunology 3: 237–243. https://doi.org/10.1038/ni760.

    Article  CAS  PubMed  Google Scholar 

  23. Zheng, Junke, Masato Umikawa, Changhao Cui, Jiyuan Li, Xiaoli Chen, Chaozheng Zhang, Hoangdinh Hyunh, et al. 2012. Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 485: 656–660. https://doi.org/10.1038/nature11095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fanger, Neil A., David Cosman, Lori Peterson, Steven C. Braddy, Charles R. Maliszewski, and Luis Borges. 1998. The MHC class I binding proteins LIR-1 and LIR-2 inhibit Fe receptor-mediated signaling in monocytes. European Journal of Immunology 28: 3423–3434. 10.1002/(SICI)1521-4141(199811)28:11<3423::AID-IMMU3423>3.0.CO;2–2.

  25. Mori, Yu, Sukenao Tsuji, Masanori Inui, Yuzuru Sakamoto, Shota Endo, Yumi Ito, Shion Fujimura, et al. 2008. Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. The Journal of Immunology 181: 4742–4751. https://doi.org/10.4049/jimmunol.181.7.4742.

  26. Broxmeyer, Hal E., Edward F. Srour, Scott Cooper, Carrie T. Wallace, Giao Hangoc, and Byung-Soon Youn. 2012. Angiopoietin-like-2 and -3 act through their coiled-coil domains to enhance survival and replating capacity of human cord blood hematopoietic progenitors. Blood Cells, Molecules, and Diseases 48: 25–29. https://doi.org/10.1161/CIRCULATIONAHA.110.956839.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, Xiaoye, Xiaoting Yu, Jingjing Xie, Mengna Zhan, Zhuo Yu, Li Xie, Hongxiang Zeng, et al. 2015. ANGPTL2/LILRB2 signaling promotes the propagation of lung cancer cells. Oncotarget 6: 21004–21015. 10.18632/oncotarget.4217.

  28. Aoi, Jun, Motoyoshi Endo, Tsuyoshi Kadomatsu, Keishi Miyata, Masahiro Nakano, Haruki Horiguchi, Aki Ogata, et al. 2011. Angiopoietin-like protein 2 is an important facilitator of inflammatory carcinogenesis and metastasis. Cancer Research 71: 7502–7512. https://doi.org/10.1158/0008-5472.CAN-11-1758.

    Article  CAS  PubMed  Google Scholar 

  29. Fan, Xuemei, Panlai Shi, Jing Dai, Yeling Lu, Chen Xue, Xiaoye Liu, Kandi Zhang, et al. 2014. Paired immunoglobulin-like receptor B regulates platelet activation. Blood 124: 2421–2430. https://doi.org/10.1182/blood-2014-03-557645.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huynh, Owen. A., Taline Hampartzoumian, Jameen P. Arm, J. Hunt, Luis Borges, Michael Ahern, Malcolm Smith, Carolyn L. Geczy, Hugh P. McNeil, and Nicodemus Tedla. 2007. Down-regulation of leucocyte immunoglobulin-like receptor expression in the synovium of rheumatoid arthritis patients after treatment with disease-modifying anti-rheumatic drugs. Rheumatology 46: 742–751. https://doi.org/10.1093/rheumatology/kel405.

  31. Lowin, Torsten, and Rainer H. Straub. 2011. Integrins and their ligands in rheumatoid arthritis. Arthritis Research and Therapy 13: 224. https://doi.org/10.1186/ar3464.

    Article  CAS  Google Scholar 

  32. Torres, Leah, Dorothy D. Dunlop, Charles G. Peterfy, Ali Guermazi, Pottumarthi Prasad, Karen W. Hayes, Jing Song, et al. 2006. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis and Cartilage 14: 1033–1040. https://doi.org/10.1016/j.joca.2006.03.015.

    Article  CAS  PubMed  Google Scholar 

  33. Goldring, Mary B., and Kenneth B. Marcu. 2009. Cartilage homeostasis in health and rheumatic diseases. Arthritis Research and Therapy 11: 224. https://doi.org/10.1186/ar2592.

    Article  CAS  PubMed  Google Scholar 

  34. Bau, Brigitte, Pia M. Gebhard, Jochen Haag, Thomas Knorr, Eckart Bartnik, and Thomas Aigner. 2002. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis and Rheumatism 46: 2648–2657. https://doi.org/10.1002/art.10531.

    Article  CAS  PubMed  Google Scholar 

  35. Ra, Hyun J., and William C. Parks. 2007. Control of matrix metalloproteinase catalytic activity. Matrix Biology 26: 587–596. https://doi.org/10.1016/j.matbio.2007.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ito, Akira, and Hideaki Nagase. 1988. Evidence that human rheumatoid synovial matrix metalloproteinase 3 is an endogenous activator of procollagenase. Archives of Biochemistry and Biophysics 267: 211–216. https://doi.org/10.1016/0003-9861(88)90025-2.

    Article  CAS  PubMed  Google Scholar 

  37. Lee, Cheol J., Su J. Moon, Jeong H. Jeong, Sangbae Lee, Mee Hyun Lee, Sun M. Yoo, and Hye S. Lee, et al. 2018. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death and Disease 9: 401. https://doi.org/10.1038/s41419-018-0433-0.

    Article  CAS  PubMed  Google Scholar 

  38. Paniagua, Ricardo T., Anna Chang, Melissa M. Mariano, Emily A. Stein, Qian Wang, Tamsin M. Lindstrom, Orr Sharpe, et al. 2010. C-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis Research and Therapy 12: 1–15. https://doi.org/10.1186/ar2940.

    Article  CAS  Google Scholar 

  39. Akhtar, Nahid, and Tariq M. Haqqi. 2011. Epigallocatechin-3-gallate suppresses the global interleukin-1beta-induced inflammatory response in human chondrocytes. Arthritis Research and Therapy 13: R93. https://doi.org/10.1186/ar3368.

    Article  CAS  PubMed  Google Scholar 

  40. Montaseri, Azadeh, Franziska Busch, Ali Mobasheri, Constanze Buhrmann, Constance Aldinger, Jafar S. Rad, and Mehdi Shakibaei. 2011. IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: Involvement of Src/PI-3k/AKT pathway. PLoS ONE 6: e28663. https://doi.org/10.1371/journal.pone.0028663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liacini, Abdelhamid, Judith Sylvester, Wen Q. Li, and Muhammad Zafarullah. 2002. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biology 21: 251–262. https://doi.org/10.1016/S0945-053X(02)00007-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciencess for their support of the present study.

Funding

This study was funded by Grants-in-Aid (No. 18H0631000) for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Sayuri Nishiyama: data curation; formal analysis; investigation; visualization; writing-original draft. Naoto Hirose: conceptualization; methodology; project administration; supervision; writing-review and editing. Makoto Yanoshita: investigation. Mami Takano: investigation. Naoki Kubo: investigation. Yuka Yamauchi: investigation. Azusa Onishi: investigation. Shota Ito: investigation. Shuzo Sakata: investigation. Daiki Kita: investigation. Yuki Asakawa-Tanne: data curation. Kotaro Tanimoto: conceptualization; project administration; supervision; writing-review and editing.

Corresponding author

Correspondence to Naoto Hirose.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, S., Hirose, N., Yanoshita, M. et al. ANGPTL2 Induces Synovial Inflammation via LILRB2. Inflammation 44, 1108–1118 (2021). https://doi.org/10.1007/s10753-020-01406-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01406-7

Key Words

Navigation