LncRNA CASC9 attenuates lactate dehydrogenase-mediated oxidative stress and inflammation in spinal cord injury via sponging miR-383-5p

Abstract

Long non-coding RNAs (lncRNAs) play important roles in various diseases, but the effect of lncRNA CASC9 on spinal cord injury (SCI) remains unclear. Therefore, the present study was conducted to explore the role of this lncRNA in SCI. SCI model was established by laminectomy in rats in vivo or induced by LPS in PC12 cells in vitro. Methylprednisolone (MP) was used for treatment in vivo. Spinal cord tissues were stained with H&E, and the oxidative stress- and inflammation-related factors were detected using their commercial kits. Cell apoptosis was determined using flow cytometry assay. Relative expression of corresponding genes was measured using qRT-PCR and western blotting. Luciferase reporter assay was used to verify binding site between CASC9 and miR-383-5p, as well as miR-383-5p and LDHA. The results showed that lncRNA CASC9 was downregulated and miR-383-5p was upregulated in SCI rats and LPS-induced PC12 cells. Severe histological injury and increased water content were also found in SCI rats. Increased levels of LDH, MDA, lactic acid, TNF-α, and IL-1β were found in SCI rats and LPS-induced PC12 cells. These changes could be reversed by MP treatment in vivo or overexpression of CASC9 in vitro. Besides, overexpression of CASC9 decreased cell apoptosis and protein expression of LDHA and increased protein expression of Nrf2 and HO-1 in LPS-induced PC12 cells. Furthermore, miR-383-5p was a direct target of CASC9 and was negatively regulated by CASC9. LDHA was a direct target of miR-383-5p and was negatively regulated by CASC9. In conclusion, lncRNA CASC9 exerted a protective role against oxidative stress, inflammation, and cell apoptosis in SCI, providing a novel therapeutic target or prognostic factor for SCI.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. 1.

    Arra, M., G. Swarnkar, K. Ke, J.E. Otero, J. Ying, X. Duan, T. Maruyama, M.F. Rai, R.J. O’Keefe, G. Mbalaviele, J. Shen, and Y. Abu-Amer. 2020. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nature Communications 11 (1): 3427. https://doi.org/10.1038/s41467-020-17242-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Borgens, R.B., and P. Liu-Snyder. 2012. Understanding secondary injury. The Quarterly Review of Biology 87 (2): 89–127. https://doi.org/10.1086/665457.

    Article  PubMed  Google Scholar 

  3. 3.

    Chan, F.K., K. Moriwaki, and M.J. De Rosa. 2013. Detection of necrosis by release of lactate dehydrogenase activity. Methods in Molecular Biology 979: 65–70. https://doi.org/10.1007/978-1-62703-290-2_7.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Fan, H., X. Liu, H.B. Tang, P. Xiao, Y.Z. Wang, and G. Ju. 2013. Protective effects of Batroxobin on spinal cord injury in rats. Neuroscience Bulletin 29 (4): 501–508. https://doi.org/10.1007/s12264-013-1354-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Injury, G. B. D. Traumatic Brain, and Collaborators Spinal Cord Injury. 2019. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology 18 (1):56-87. doi:https://doi.org/10.1016/S1474-4422(18)30415-0.

  6. 6.

    Jia, Z., H. Zhu, J. Li, X. Wang, H. Misra, and Y. Li. 2012. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 50 (4): 264–274. https://doi.org/10.1038/sc.2011.111.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Jiang, Z.S., and J.R. Zhang. 2018. LncRNA SNHG5 enhances astrocytes and microglia viability via upregulating KLF4 in spinal cord injury. International Journal of Biological Macromolecules 120 (Pt A): 66–72. https://doi.org/10.1016/j.ijbiomac.2018.08.002.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kumar, H., A.E. Ropper, S.H. Lee, and I. Han. 2017. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury. Molecular Neurobiology 54 (5): 3578–3590. https://doi.org/10.1007/s12035-016-9910-6.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Liang, Y., X. Chen, Y. Wu, J. Li, S. Zhang, K. Wang, X. Guan, K. Yang, and Y. Bai. 2018. LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death and Differentiation 25 (11): 1980–1995. https://doi.org/10.1038/s41418-018-0084-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ling, W., X. Xu, and J. Liu. 2017. A causal relationship between the neurotherapeutic effects of miR182/7a and decreased expression of PRDM5. Biochemical and Biophysical Research Communications 490 (1): 1–7. https://doi.org/10.1016/j.bbrc.2017.05.141.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Loboda, A., M. Damulewicz, E. Pyza, A. Jozkowicz, and J. Dulak. 2016. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and Molecular Life Sciences 73 (17): 3221–3247. https://doi.org/10.1007/s00018-016-2223-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lv, R., L. Du, L. Zhang, and Z. Zhang. 2019. Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sciences 217: 119–127. https://doi.org/10.1016/j.lfs.2018.11.053.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ren, X.D., C.X. Wan, and Y.L. Niu. 2019. Overexpression of lncRNA TCTN2 protects neurons from apoptosis by enhancing cell autophagy in spinal cord injury. FEBS Open Bio 9 (7): 1223–1231. https://doi.org/10.1002/2211-5463.12651.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Rowland, J.W., G.W. Hawryluk, B. Kwon, and M.G. Fehlings. 2008. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurgical Focus 25 (5): E2. https://doi.org/10.3171/FOC.2008.25.11.E2.

    Article  PubMed  Google Scholar 

  15. 15.

    Shi, Y., S. Kim, T.B. Huff, R.B. Borgens, K. Park, R. Shi, and J.X. Cheng. 2010. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nature Nanotechnology 5 (1): 80–87. https://doi.org/10.1038/nnano.2009.303.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Takuma, A., A. Abe, Y. Saito, C. Nito, M. Ueda, Y. Ishimaru, H. Harada, K. Abe, K. Kimura, and T. Asakura. 2017. Gene Expression Analysis of the Effect of Ischemic Infarction in Whole Blood. International Journal of Molecular Sciences 18 (11). https://doi.org/10.3390/ijms18112335.

  17. 17.

    Wang, F., J. Liu, X. Wang, J. Chen, Q. Kong, B. Ye, and Z. Li. 2019. The Emerging Role of lncRNAs in Spinal Cord Injury. BioMed Research International 2019: 3467121–3467129. https://doi.org/10.1155/2019/3467121.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wang, H.R., X.Y. Guo, X.Y. Liu, and X. Song. 2020. Down-regulation of lncRNA CASC9 aggravates sepsis-induced acute lung injury by regulating miR-195-5p/PDK4 axis. Inflammation Research 69 (6): 559–568. https://doi.org/10.1007/s00011-020-01316-2.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wei, C., and J.J. Gao. 2019. Downregulated miR-383-5p contributes to the proliferation and migration of gastric cancer cells and is associated with poor prognosis. PeerJ 7: e7882. https://doi.org/10.7717/peerj.7882.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wei, G.J., G. An, Z.W. Shi, K.F. Wang, Y. Guan, Y.S. Wang, B. Han, E.M. Yu, P.F. Li, D.M. Dong, L.P. Wang, Z.W. Teng, and D.L. Zhao. 2017. Suppression of MicroRNA-383 Enhances Therapeutic Potential of Human Bone-Marrow-Derived Mesenchymal Stem Cells in Treating Spinal Cord Injury via GDNF. Cellular Physiology and Biochemistry 41 (4): 1435–1444. https://doi.org/10.1159/000468057.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Wei, G.J., K.W. Zheng, G. An, Z.W. Shi, K.F. Wang, Y. Guan, Y.S. Wang, P.F. Li, and D.M. Dong. 2018. Comprehensive Effects of Suppression of MicroRNA-383 in Human Bone-Marrow-Derived Mesenchymal Stem Cells on Treating Spinal Cord Injury. Cellular Physiology and Biochemistry 47 (1): 129–139. https://doi.org/10.1159/000489756.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Xu, B., S.C. Zang, L.M. Lang, S. Lian, J. Lu, S.Z. Li, H.M. Yang, and L. Zhen. 2020. Down-regulation of miR-383-5p suppresses apoptosis in oxidative stress rat hepatocytes by targeting Bcl2. Journal of Animal Physiology and Animal Nutrition (Berl) 104: 1948–1959. https://doi.org/10.1111/jpn.13328.

    CAS  Article  Google Scholar 

  23. 23.

    Yan, X., J. Liu, X. Wang, W. Li, J. Chen, and H. Sun. 2018. Pretreatment with AQP4 and NKCC1 Inhibitors Concurrently Attenuated Spinal Cord Edema and Tissue Damage after Spinal Cord Injury in Rats. Frontiers in Physiology 9: 6. https://doi.org/10.3389/fphys.2018.00006.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yang, S., Q. Ning, G. Zhang, H. Sun, Z. Wang, and Y. Li. 2016. Construction of differential mRNA-lncRNA crosstalk networks based on ceRNA hypothesis uncover key roles of lncRNAs implicated in esophageal squamous cell carcinoma. Oncotarget 7 (52): 85728–85740. https://doi.org/10.18632/oncotarget.13828.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yang, Y.B., and Y.J. Piao. 2003. Effects of resveratrol on secondary damages after acute spinal cord injury in rats. Acta Pharmacologica Sinica 24 (7): 703–710.

    CAS  PubMed  Google Scholar 

  26. 26.

    Zhan, Y., L. Zhang, S. Yu, J. Wen, Y. Liu, and X. Zhang. 2020. Long non-coding RNA CASC9 promotes tumor growth and metastasis via modulating FZD6/Wnt/beta-catenin signaling pathway in bladder cancer. Journal of Experimental & Clinical Cancer Research 39 (1): 136. https://doi.org/10.1186/s13046-020-01624-9.

    CAS  Article  Google Scholar 

  27. 27.

    Zhang, Z., L. Xu, L. He, J. Wang, X. Shi, Z. Li, S. Shi, K. Hou, Y. Teng, and X. Qu. 2020. MiR-891a-5p as a prognostic marker and therapeutic target for hormone receptor-positive breast cancer. Journal of Cancer 11 (13): 3771–3782. https://doi.org/10.7150/jca.40750.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zhao, S., X. Gao, S. Zang, Y. Li, X. Feng, and X. Yuan. 2017. MicroRNA-383-5p acts as a prognostic marker and inhibitor of cell proliferation in lung adenocarcinoma by cancerous inhibitor of protein phosphatase 2A. Oncology Letters 14 (3): 3573–3579. https://doi.org/10.3892/ol.2017.6603.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Zhao, W., T. Chen, and Y. Zhao. 2020. Upregulated lncRNA CASC9 Contributes to Progression of Non-Small Cell Lung Cancer Through Inhibition of miR-335-3p and Activation S100A14 Expression. Oncotargets and Therapy 13: 6027–6036. https://doi.org/10.2147/OTT.S249973.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Zhu, W., L. Ma, J. Qian, J. Xu, T. Xu, L. Pang, H. Zhou, Y. Shu, and J. Zhou. 2018. The molecular mechanism and clinical significance of LDHA in HER2-mediated progression of gastric cancer. American Journal of Translational Research 10 (7): 2055–2067.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Yi Wang raised the concept. Yi Wang and Congjin Guan collected the data. Congjin Guan analyzed and interpreted the data. Yi Wang and Congjin Guan generated the manuscript.

Corresponding author

Correspondence to Yi Wang.

Ethics declarations

Competing Interests

The authors declare that there is no conflict of interest.

Ethical Approval and Consent to Participate

All experiments were approved by the Animal Care and Use Committee at Nanjing Medical University.

Consent for Publication

All the authors agree to submit the final version of manuscript for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guan, C., Wang, Y. LncRNA CASC9 attenuates lactate dehydrogenase-mediated oxidative stress and inflammation in spinal cord injury via sponging miR-383-5p. Inflammation (2021). https://doi.org/10.1007/s10753-020-01387-7

Download citation

KEY WORDS

  • spinal cord injury
  • LncRNA CASC9
  • lactate dehydrogenase
  • miR-383-5p