Skip to main content

Advertisement

Log in

Silencing TLR4/MyD88/NF-κB Signaling Pathway Alleviated Inflammation of Corneal Epithelial Cells Infected by ISE

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The regulatory role of toll-like receptor 4 (TLR4) in the inactivate staphylococcus epidermidis (ISE)-induced cornea inflammation is not well investigated. Here, TLR4 silence could decrease inflammatory cytokines in corneal epithelial cells treated with ISE. The mouse corneal epithelial cells were exposed to ISE for 24 h, either alone or with the NF-κB inhibitor, TLR4 lentivirus to bilaterally (knock-down or and overexpression). The expression of TLR4 in mouse corneal epithelial cells was investigated using western blot and qRT-PCR assay. The inflammatory cytokine levels were evaluated by qRT-PCR and ELISA, respectively. The relative impact factors of TLR4-mediated NF-κB signaling detected using western blot assay. Results show the expression levels of TLR4 and some inflammatory cytokines were significantly increased in corneal epithelial cells treated with ISE. TLR4 Silence markedly decreased ISE-induced production of IL12, TNF-α, CCL5, and CCL9 in corneal epithelial cells. Furthermore, the nuclear translocation of NF-κB p65 and myeloid differentiation protein 88 (MyD88) in the cells treated with ISE were further reduced by silencing TLR4. Inhibition of TLR4-mediated NF-κB signaling by using BAY11-7082 also alleviated ISE-induced inflammation. In the rescue experiment, transfected the stable TLR4 silenced corneal epithelial cells with TLR4 overexpression lentivirus, we found that TLR4 overexpression can restore the down-regulation of TLR4 and inflammatory cytokines (IL12, TNF-α, CCL9) caused by TLR4 knocked down. Therefore, ISE-induced cornea inflammation was due to the activation of the TLR4/MyD88/NF-κB signaling pathway, and dramatically stimulated IL12, TNF-α, CCL9 secretion. TLR4 silence presented mitigates damage in corneal epithelial cells treated with ISE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bagnall, K., J. Raso, M. Moreau, J. Mahood, X. Wang, and M. Beuerlein. 2002. The development of scoliosis following pinealectomy in young chickens is not the result of an artifact of the surgical procedure. Studies in Health Technology and Informatics 88: 3–9.

    PubMed  CAS  Google Scholar 

  2. Austin, A., T. Lietman, and J. Rose-Nussbaumer. 2017. Update on the management of infectious keratitis. Ophthalmology 124: 1678–1689.

    PubMed  PubMed Central  Google Scholar 

  3. Chen, J., and J. Yuan. 2007. Stress on recognition and standardizing medical therapy for infectious corneal diseases in China. Ophthalmology in China 16 (3): 145–147.

    Google Scholar 

  4. Collier, S.A., M.P. Gronostaj, A.K. MacGurn, J.R. Cope, K.L. Awsumb, J.S. Yoder, M.J. Beach, and Centers for Disease, C., & Prevention. 2014. Estimated burden of keratitis—United States, 2010. MMWR. Morbidity and Mortality Weekly Report 63 (45): 1027–1030.

    PubMed  PubMed Central  Google Scholar 

  5. Berger, E.A. 2019. Understanding the role of pro-resolving lipid mediators in infectious keratitis. Advances in Experimental Medicine and Biology 1161: 3–12.

    PubMed  CAS  Google Scholar 

  6. Lichtinger, A., S.N. Yeung, P. Kim, M.D. Amiran, A. Iovieno, U. Elbaz, J.Y. Ku, R. Wolff, D.S. Rootman, and A.R. Slomovic. 2012. Shifting trends in bacterial keratitis in Toronto: an 11-year review. Ophthalmology 119 (9): 1785–1790.

    PubMed  Google Scholar 

  7. Chang, V.S., D.K. Dhaliwal, L. Raju, and R.P. Kowalski. 2015. Antibiotic resistance in the treatment of staphylococcus aureus keratitis: a 20-year review. Cornea 34 (6): 698–703.

    PubMed  PubMed Central  Google Scholar 

  8. Khor, W.B., V.N. Prajna, P. Garg, J.S. Mehta, L. Xie, Z. Liu, M.D.B. Padilla, C.K. Joo, Y. Inoue, P. Goseyarakwong, F.R. Hu, K. Nishida, S. Kinoshita, V. Puangsricharern, A.L. Tan, R. Beuerman, A. Young, N. Sharma, B. Haaland, F.S. Mah, E.Y. Tu, F.J. Stapleton, R.L. Abbott, D.T. Tan, and Group, A. 2018. The Asia Cornea Society Infectious Keratitis Study: a prospective multicenter study of infectious keratitis in Asia. American Journal of Ophthalmology 195: 161–170.

    PubMed  Google Scholar 

  9. Gerke, J.R., and M.V. Magliocco. 1971. Experimental Pseudomonas aeruginosa Infection of the Mouse Cornea. Infection and Immunity 3 (2): 209–216.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Kufer, T.A., E.M. Creagh, and C.E. Bryant. 2019. Guardians of the Cell: Effector-triggered immunity steers mammalian immune defense. Trends in Immunology 40 (10): 939–951.

    PubMed  CAS  Google Scholar 

  11. Wang, C., G. Wang, C. Zhang, P. Zhu, H. Dai, N. Yu, Z. He, L. Xu, and E. Wang. 2017. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK Cascade in Rice. Molecular Plant 10 (4): 619–633.

    PubMed  CAS  Google Scholar 

  12. Segonzac, C., A.P. Macho, M. Sanmartin, V. Ntoukakis, J.J. Sanchez-Serrano, and C. Zipfel. 2014. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity. The EMBO Journal 33 (18): 2069–2079.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Kadota, Y., J. Sklenar, P. Derbyshire, L. Stransfeld, S. Asai, V. Ntoukakis, J.D. Jones, K. Shirasu, F. Menke, A. Jones, and C. Zipfel. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell 54 (1): 43–55.

    PubMed  CAS  Google Scholar 

  14. Goodwin, M., E. Lee, U. Lakshmanan, S. Shipp, L. Froessl, F. Barzaghi, L. Passerini, M. Narula, A. Sheikali, C.M. Lee, G. Bao, C.S. Bauer, H.K. Miller, M. Garcia-Lloret, M.J. Butte, A. Bertaina, A. Shah, M. Pavel-Dinu, A. Hendel, M. Porteus, M.G. Roncarolo, and R. Bacchetta. 2020. CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells. Science Advances 6 (19): eaaz0571.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Franz, K.M., and J.C. Kagan. 2017. Innate immune receptors as competitive determinants of cell fate. Molecular Cell 66 (6): 750–760.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Rodet, F., A. Tasiemski, C. Boidin-Wichlacz, C. Van Camp, C. Vuillaume, C. Slomianny, and M. Salzet. 2015. Hm-MyD88 and Hm-SARM: two key regulators of the neuroimmune system and neural repair in the medicinal leech. Scientific Reports 5: 9624.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Kargas, V., J.K. Marzinek, D.A. Holdbrook, H. Yin, R.C. Ford, and P.J. Bond. 2017. A polar SxxS motif drives assembly of the transmembrane domains of toll-like receptor 4. Biochimica et Biophysica Acta - Biomembranes 1859 (10): 2086–2095.

    PubMed  CAS  Google Scholar 

  18. Su, L.C., W.D. Xu, and A.F. Huang. 2020. IRAK family in inflammatory autoimmune diseases. Autoimmunity Reviews 19: 102461.

    PubMed  CAS  Google Scholar 

  19. Leventhal, J.S. 2018. Lose appetite, lose control: integrins and noncanonical autophagy regulate germinal center reactions. The Journal of Clinical Investigation 128 (9): 3752–3753.

    PubMed  PubMed Central  Google Scholar 

  20. Dinarello, C.A. 2018. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological Reviews 281 (1): 8–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Rangasamy, S.B., M. Jana, A. Roy, G.T. Corbett, M. Kundu, S. Chandra, S. Mondal, S. Dasarathi, E.J. Mufson, R.K. Mishra, C.H. Luan, D.A. Bennett, and K. Pahan. 2018. Selective disruption of TLR2-MyD88 interaction inhibits inflammation and attenuates Alzheimer's pathology. The Journal of Clinical Investigation 128 (10): 4297–4312.

    PubMed  PubMed Central  Google Scholar 

  22. Sintes, J., M. Gentile, S. Zhang, Y. Garcia-Carmona, G. Magri, L. Cassis, D. Segura-Garzon, A. Ciociola, E.K. Grasset, S. Bascones, L. Comerma, M. Pybus, D. Llige, I. Puga, C. Gutzeit, B. He, W. DuBois, M. Crespo, J. Pascual, A. Mensa, J.I. Arostegui, M. Juan, J. Yague, S. Serrano, J. Lloreta, E. Meffre, M. Hahne, C. Cunningham-Rundles, B.A. Mock, and A. Cerutti. 2017. mTOR intersects antibody-inducing signals from TACI in marginal zone B cells. Nature Communications 8 (1): 1462.

    PubMed  PubMed Central  Google Scholar 

  23. Schweighoffer, E., J. Nys, L. Vanes, N. Smithers, and V.L.J. Tybulewicz. 2017. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. The Journal of Experimental Medicine 214 (5): 1269–1280.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Ignatz-Hoover, J.J., H. Wang, S.A. Moreton, A. Chakrabarti, M.K. Agarwal, K. Sun, K. Gupta, and D.N. Wald. 2015. The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia 29 (4): 918–926.

    PubMed  CAS  Google Scholar 

  25. Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282 (5396): 2085–2088.

    PubMed  CAS  Google Scholar 

  26. Yang, W.S., J.J. Kim, M.J. Lee, E.K. Lee, and S.K. Park. 2018. ADAM17-mediated Ectodomain shedding of toll-like receptor 4 as a negative feedback regulation in lipopolysaccharide-activated aortic endothelial cells. Cellular Physiology and Biochemistry 45 (5): 1851–1862.

    PubMed  CAS  Google Scholar 

  27. Freise, N., A. Burghard, T. Ortkras, N. Daber, A. Imam Chasan, S.L. Jauch, O. Fehler, J. Hillebrand, M. Schakaki, J. Rojas, B. Grimbacher, T. Vogl, A. Hoffmeier, S. Martens, J. Roth, and J. Austermann. 2019. Signaling mechanisms inducing hyporesponsiveness of phagocytes during systemic inflammation. Blood 134 (2): 134–146.

    PubMed  CAS  Google Scholar 

  28. Bourke, E., D. Bosisio, J. Golay, N. Polentarutti, and A. Mantovani. 2003. The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood 102 (3): 956–963.

    PubMed  Google Scholar 

  29. Wada, J., and H. Makino. 2016. Innate immunity in diabetes and diabetic nephropathy. Nature Reviews. Nephrology 12 (1): 13–26.

    PubMed  CAS  Google Scholar 

  30. Skirecki, T., and J.M. Cavaillon. 2019. Inner sensors of endotoxin - implications for sepsis research and therapy. FEMS Microbiology Reviews 43 (3): 239–256.

    PubMed  CAS  Google Scholar 

  31. He, Y., S. Liu, D.E. Kling, S. Leone, N.T. Lawlor, Y. Huang, S.B. Feinberg, D.R. Hill, and D.S. Newburg. 2016. The human milk oligosaccharide 2’-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 65 (1): 33–46.

    PubMed  CAS  Google Scholar 

  32. Zhang, W., W. Li, C. Zhang, C. Zhu, X. Yi, Y. Zhou, and Y. Lv. 2019. Effects of vitamin A on expressions of apoptosis genes Bax and Bcl-2 in epithelial cells of corneal tissues induced by benzalkonium chloride in mice with dry eye. Medical Science Monitor 25: 4583–4589.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Chawla, S., and S. Ghosh. 2018. Establishment of in vitro model of corneal scar pathophysiology. Journal of Cellular Physiology 233 (5): 3817–3830.

    PubMed  CAS  Google Scholar 

  34. Huxlin, K.R., H.B. Hindman, K.I. Jeon, J. Buhren, S. MacRae, M. DeMagistris, D. Ciufo, P.J. Sime, and R.P. Phipps. 2013. Topical rosiglitazone is an effective anti-scarring agent in the cornea. PLoS One 8 (8): e70785.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Li, Y., J.Y. Yang, X. Xie, Z. Jie, L. Zhang, J. Shi, D. Lin, M. Gu, X. Zhou, H.S. Li, S.S. Watowich, A. Jain, S. Yun Jung, J. Qin, X. Cheng, and S.C. Sun. 2019. Preventing abnormal NF-kappaB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Research 29 (6): 474–485.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Lakhundi, S., R. Siddiqui, and N.A. Khan. 2017. Pathogenesis of microbial keratitis. Microbial Pathogenesis 104: 97–109.

    PubMed  CAS  Google Scholar 

  37. Wang, W., Z. Deng, H. Wu, Q. Zhao, T. Li, W. Zhu, X. Wang, L. Tang, C. Wang, S.Z. Cui, H. Xiao, and J. Chen. 2019. A small secreted protein triggers a TLR2/4-dependent inflammatory response during invasive Candida albicans infection. Nature Communications 10 (1): 1015.

    PubMed  PubMed Central  Google Scholar 

  38. Brennan, J.J., and T.D. Gilmore. 2018. Evolutionary Origins of Toll-like Receptor Signaling. Molecular Biology and Evolution 35 (7): 1576–1587.

    PubMed  CAS  Google Scholar 

  39. Engelmann, C., M. Sheikh, S. Sharma, T. Kondo, H. Loeffler-Wirth, Y.B. Zheng, S. Novelli, A. Hall, A.J.C. Kerbert, J. Macnaughtan, R. Mookerjee, A. Habtesion, N. Davies, T. Ali, S. Gupta, F. Andreola, and R. Jalan. 2020. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure. Journal of Hepatology 73: 102–112.

    PubMed  CAS  Google Scholar 

  40. Kang, K., M. Bachu, S.H. Park, K. Kang, S. Bae, K.H. Park-Min, and L.B. Ivashkiv. 2019. IFN-gamma selectively suppresses a subset of TLR4-activated genes and enhancers to potentiate macrophage activation. Nature Communications 10 (1): 3320.

    PubMed  PubMed Central  Google Scholar 

  41. Zhou, Y., J. Ming, M. Deng, Y. Li, B. Li, J. Li, Y. Ma, Z. Chen, and S. Liu. 2020. Berberine-mediated up-regulation of surfactant protein D facilitates cartilage repair by modulating immune responses via the inhibition of TLR4/NF-kB signaling. Pharmacological Research 155: 104690.

    PubMed  CAS  Google Scholar 

  42. Limongi, D., S. Baldelli, P. Checconi, M.E. Marcocci, G. De Chiara, A. Fraternale, M. Magnani, M.R. Ciriolo, and A.T. Palamara. 2019. GSH-C4 acts as anti-inflammatory drug in different models of canonical and cell autonomous inflammation through NFkappaB Inhibition. Frontiers in Immunology 10: 155.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Kwon, J.W., H.K. Kwon, H.J. Shin, Y.M. Choi, M.A. Anwar, and S. Choi. 2015. Activating transcription factor 3 represses inflammatory responses by binding to the p65 subunit of NF-kappaB. Scientific Reports 5: 14470.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Brothers, K.M., J.D. Callaghan, N.A. Stella, J.M. Bachinsky, M. AlHigaylan, K.L. Lehner, J.M. Franks, K.L. Lathrop, E. Collins, D.M. Schmitt, J. Horzempa, and R.M.Q. Shanks. 2019. Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells. PLoS Pathogens 15 (6): e1007825.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the Natural Science Foundation of Jiangsu Province, China (15KJB180015), Nantong Science and Technology Program (JC2018090), and Scientific Innovation Research of College Graduates in Jiangsu Province (KYCX18-2415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Peng.

Ethics declarations

Conflicts of Interest

We hereby declare that there is no conflict of interest between the authors of this manuscript.

Ethical Approval

All animal procedures were approved by the Lab Animal Ethical Committee of Nantong University and were performed according to the Standard Operating Procedures for Laboratory Animal Center of Nantong University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Du, L., Ju, Q. et al. Silencing TLR4/MyD88/NF-κB Signaling Pathway Alleviated Inflammation of Corneal Epithelial Cells Infected by ISE. Inflammation 44, 633–644 (2021). https://doi.org/10.1007/s10753-020-01363-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01363-1

KEY WORDS

Navigation