Skip to main content

Advertisement

Log in

ROS-Dependent Lipid Peroxidation and Reliant Antioxidant Ferroptosis-Suppressor-Protein 1 in Rheumatoid Arthritis: a Covert Clue for Potential Therapy

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a common systemic autoimmune disease with a prevalence of about 1% in which genetic and environmental risk factors both participate in performance of disease. Though several studies contributed in identifying its etiology and pathogenesis, the underlying mechanisms are still unknown. To date, so as palliative for RA, cure strategies are still popular. Hypoxia and oxidative stress are implicated to RA development and subsequent ROS-mediated cell death which is a critical feature for RA progression. As for cell death and lipid peroxidation, ferroptosis is a newly discovered, iron-dependent, and non-apoptotic cell death which draws various attention due to its potential strategies for cancer therapy. Meanwhile, ferroptosis-suppressor-protein 1 (FSP1) is recently identified as a seminal breakthrough owing to its property of versus ferroptosis. By virtue of the complicated research progress on FSP1 with ferroptosis, in this review, we summarize the whole region of relevance between ROS and RA. Taken together, we hypothesize that ROS accompanied with ferroptosis may function as a reciprocal with cell death that interplays with RA; besides, FSP1 might become a potential therapeutic target for RA because of its potential interaction with TNF-α/ROS-positive feedback loop. This review systematically concludes the previous understandings about identification of ROS and FSP1 and, in turn, aims to provide references for further achievements of them and hints on elucidation of its thorough underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smolen, J.S., D. Aletaha, and I.B. McInnes. 2016. Rheumatoid arthritis. Lancet (London, England) 388: 2023–2038.

    Article  CAS  Google Scholar 

  2. Taylor, P.C., E.C. Keystone, D. van der Heijde, M.E. Weinblatt, Morales L. Del Carmen, J. Reyes Gonzaga, et al. 2017. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. The New England Journal of Medicine 376: 652–662.

    Article  CAS  PubMed  Google Scholar 

  3. Smolen, J.S., D. Aletaha, J.W. Bijlsma, F.C. Breedveld, D. Boumpas, G. Burmester, et al. 2010. Treating rheumatoid arthritis to target: Recommendations of an international task force. Annals of the Rheumatic Diseases 69: 631–637.

    Article  PubMed  Google Scholar 

  4. Wright, H.L., R.J. Moots, and S.W. Edwards. 2014. The multifactorial role of neutrophils in rheumatoid arthritis. Nature Reviews Rheumatology 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, W., Z. Li, Q. Meng, P. Zhang, P. Yan, Z. Zhang, H. Zhang, J. Pan, Y. Zhai, Y. Liu, X. Wang, W. Li, and Y. Zhao. 2016. Chronic calcium channel inhibitor verapamil antagonizes TNF-alpha-mediated inflammatory reaction and protects against inflammatory arthritis in mice. Inflammation 39: 1624–1634.

    Article  CAS  PubMed  Google Scholar 

  6. van Delft, M.A.M., and T.W.J. Huizinga. 2020. An overview of autoantibodies in rheumatoid arthritis. Journal of Autoimmunity 102392.

  7. Schett, G. 2009. Osteoimmunology in rheumatic diseases. Arthritis Research & Therapy 11: 210.

    Article  CAS  Google Scholar 

  8. Tang, W., Y. Lu, Q.Y. Tian, Y. Zhang, F.J. Guo, G.Y. Liu, et al. 2011. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science (New York, NY) 332: 478–484.

    Article  CAS  Google Scholar 

  9. Zhao, Y., A. Zhang, H. Du, S. Guo, B. Ning, and S. Yang. 2012. Tolerogenic dendritic cells and rheumatoid arthritis: current status and perspectives. Rheumatology International 32: 837–844.

    Article  CAS  PubMed  Google Scholar 

  10. Li, W., W. Wang, L. Liu, R. Qu, X. Chen, C. Qiu, J. Li, J. Hayball, L. Liu, J. Chen, X. Wang, X. Pan, and Y. Zhao. 2019. GDF11 antagonizes TNF-alpha-induced inflammation and protects against the development of inflammatory arthritis in mice. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 33: 3317–3329.

    Article  CAS  Google Scholar 

  11. Adan, N., J. Guzman-Morales, M.G. Ledesma-Colunga, S.I. Perales-Canales, A. Quintanar-Stephano, F. Lopez-Barrera, et al. 2013. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. The Journal of Clinical Investigation 123: 3902–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dixon, S.J., K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, C.E. Gleason, D.N. Patel, A.J. Bauer, A.M. Cantley, W.S. Yang, B. Morrison III, and B.R. Stockwell. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149: 1060–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stockwell, B.R., J.P. Friedmann Angeli, H. Bayir, A.I. Bush, M. Conrad, S.J. Dixon, S. Fulda, S. Gascón, S.K. Hatzios, V.E. Kagan, K. Noel, X. Jiang, A. Linkermann, M.E. Murphy, M. Overholtzer, A. Oyagi, G.C. Pagnussat, J. Park, Q. Ran, C.S. Rosenfeld, K. Salnikow, D. Tang, F.M. Torti, S.V. Torti, S. Toyokuni, K.A. Woerpel, and D.D. Zhang. 2017. Ferroptosis: a regulated cell death Nexus linking metabolism, redox biology, and disease. Cell 171: 273–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Viswanathan, V.S., M.J. Ryan, H.D. Dhruv, S. Gill, O.M. Eichhoff, B. Seashore-Ludlow, S.D. Kaffenberger, J.K. Eaton, K. Shimada, A.J. Aguirre, S.R. Viswanathan, S. Chattopadhyay, P. Tamayo, W.S. Yang, M.G. Rees, S. Chen, Z.V. Boskovic, S. Javaid, C. Huang, X. Wu, Y.Y. Tseng, E.M. Roider, D. Gao, J.M. Cleary, B.M. Wolpin, J.P. Mesirov, D.A. Haber, J.A. Engelman, J.S. Boehm, J.D. Kotz, C.S. Hon, Y. Chen, W.C. Hahn, M.P. Levesque, J.G. Doench, M.E. Berens, A.F. Shamji, P.A. Clemons, B.R. Stockwell, and S.L. Schreiber. 2017. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547: 453–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tarangelo, A., L. Magtanong, K.T. Bieging-Rolett, Y. Li, J. Ye, L.D. Attardi, and S.J. Dixon. 2018. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Reports 22: 569–575.

    Article  CAS  PubMed  Google Scholar 

  16. Maiorino, M., M. Conrad, and F. Ursini. 2018. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxidants & Redox Signaling 29: 61–74.

    Article  CAS  Google Scholar 

  17. Conrad, M., and D.A. Pratt. 2019. The chemical basis of ferroptosis. Nature Chemical Biology 15: 1137–1147.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, H., P. An, E. Xie, Q. Wu, X. Fang, H. Gao, et al. 2017. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology (Baltimore, Md) 66: 449–465.

    Article  CAS  Google Scholar 

  19. Doll, S., F.P. Freitas, R. Shah, M. Aldrovandi, M.C. da Silva, I. Ingold, A. Goya Grocin, T.N. Xavier da Silva, E. Panzilius, C.H. Scheel, A. Mourão, K. Buday, M. Sato, J. Wanninger, T. Vignane, V. Mohana, M. Rehberg, A. Flatley, A. Schepers, A. Kurz, D. White, M. Sauer, M. Sattler, E.W. Tate, W. Schmitz, A. Schulze, V. O’Donnell, B. Proneth, G.M. Popowicz, D.A. Pratt, J.P.F. Angeli, and M. Conrad. 2019. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575: 693–698.

    Article  CAS  PubMed  Google Scholar 

  20. Bersuker, K., J.M. Hendricks, Z. Li, L. Magtanong, B. Ford, P.H. Tang, M.A. Roberts, B. Tong, T.J. Maimone, R. Zoncu, M.C. Bassik, D.K. Nomura, S.J. Dixon, and J.A. Olzmann. 2019. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575: 688–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luczaj, W., E. Gindzienska-Sieskiewicz, I. Jarocka-Karpowicz, L. Andrisic, S. Sierakowski, N. Zarkovic, et al. 2016. The onset of lipid peroxidation in rheumatoid arthritis: consequences and monitoring. Free Radical Research 50: 304–313.

    Article  CAS  PubMed  Google Scholar 

  22. Phull, A.R., B. Nasir, I.U. Haq, and S.J. Kim. 2018. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chemico-Biological Interactions 281: 121–136.

    Article  CAS  PubMed  Google Scholar 

  23. Mjaavatten, M.D., D.M. van der Heijde, T. Uhlig, A.J. Haugen, H. Nygaard, O. Bjørneboe, et al. 2011. Should anti-citrullinated protein antibody and rheumatoid factor status be reassessed during the first year of followup in recent-onset arthritis? A longitudinal study. The Journal of Rheumatology 38: 2336–2341.

    Article  CAS  PubMed  Google Scholar 

  24. Hadjigogos, K. 2003. The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Medica 45: 7–13.

    CAS  PubMed  Google Scholar 

  25. Latchoumycandane, C., G.K. Marathe, R. Zhang, and T.M. McIntyre. 2012. Oxidatively truncated phospholipids are required agents of tumor necrosis factor alpha (TNFalpha)-induced apoptosis. The Journal of Biological Chemistry 287: 17693–17705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen, N.H., G.B. Tran, and C.T. Nguyen. 2020. Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases. Journal of molecular medicine (Berlin, Germany) 98: 59–69.

    Article  CAS  Google Scholar 

  27. Yu, D.H., J.K. Yi, H.S. Yuh, S. Park, H.J. Kim, K.B. Bae, et al. 2012. Over-expression of extracellular superoxide dismutase in mouse synovial tissue attenuates the inflammatory arthritis. Experimental & Molecular Medicine 44: 529–535.

    Article  CAS  Google Scholar 

  28. Kwon, M.J., J. Han, B.H. Kim, Y.S. Lee, and T.Y. Kim. 2012. Superoxide dismutase 3 suppresses hyaluronic acid fragments mediated skin inflammation by inhibition of toll-like receptor 4 signaling pathway: superoxide dismutase 3 inhibits reactive oxygen species-induced trafficking of toll-like receptor 4 to lipid rafts. Antioxidants & Redox Signaling 16: 297–313.

    Article  CAS  Google Scholar 

  29. Ookawara, T., T. Kizaki, E. Takayama, N. Imazeki, O. Matsubara, Y. Ikeda, K. Suzuki, L. Li Ji, T. Tadakuma, N. Taniguchi, and H. Ohno. 2002. Nuclear translocation of extracellular superoxide dismutase. Biochemical and Biophysical Research Communications 296: 54–61.

    Article  CAS  PubMed  Google Scholar 

  30. Kaneko, K., Y. Miyabe, A. Takayasu, S. Fukuda, C. Miyabe, M. Ebisawa, W. Yokoyama, K. Watanabe, T. Imai, K. Muramoto, Y. Terashima, T. Sugihara, K. Matsushima, N. Miyasaka, and T. Nanki. 2011. Chemerin activates fibroblast-like synoviocytes in patients with rheumatoid arthritis. Arthritis Research & Therapy 13: R158.

    Article  CAS  Google Scholar 

  31. Wu, Q., L. Liu, A. Miron, B. Klímová, D. Wan, and K. Kuča. 2016. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology 90: 1817–1840.

    Article  CAS  PubMed  Google Scholar 

  32. Shen, C., G.Q. Cai, J.P. Peng, and X.D. Chen. 2015. Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling. Osteoarthritis and Cartilage 23: 2279–2287.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao Y, Shi M, Qiu Q, Huang M, Zeng S, Zou Y, et al. Piperlongumine suppresses dendritic cell maturation by reducing production of reactive oxygen species and has therapeutic potential for rheumatoid arthritis. Journal of immunology (Baltimore, Md: 1950) 2016; 196:4925–34.

  34. Noh, E.M., J. Park, H.R. Song, J.M. Kim, M. Lee, H.K. Song, et al. 2016. Skin aging-dependent activation of the PI3K signaling pathway via downregulation of PTEN increases intracellular ROS in human dermal fibroblasts. Oxidative Medicine and Cellular Longevity 2016: 6354261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Guan, Y., L. Zhou, Y. Zhang, H. Tian, A. Li, and X. Han. 2019. Effects of PP2A/Nrf2 on experimental diabetes mellitus-related cardiomyopathy by regulation of autophagy and apoptosis through ROS dependent pathway. Cellular Signalling 62: 109339.

    Article  CAS  PubMed  Google Scholar 

  36. Liao, G., M. Zhang, E.W. Harhaj, and S.C. Sun. 2004. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. The Journal of Biological Chemistry 279: 26243–26250.

    Article  CAS  PubMed  Google Scholar 

  37. Yue S, Xue N, Li H, Huang B, Chen Z, Wang X. Hepatoprotective effect of apigenin against liver injury via the non-canonical NF-κB pathway in vivo and in vitro. Inflammation 2020.

  38. Sun, S.C. 2017. The non-canonical NF-κB pathway in immunity and inflammation. Nature Reviews Immunology 17: 545–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu, F., Z. Hui, W. Wei, J. Yang, Z. Chen, B. Guo, F. Xing, X. Zhang, L. Pan, and J. Xu. 2017. Hypotonic stress promotes ATP release, reactive oxygen species production and cell proliferation via TRPV4 activation in rheumatoid arthritis rat synovial fibroblasts. Biochemical and Biophysical Research Communications 486: 108–115.

    Article  CAS  PubMed  Google Scholar 

  40. Silva, G.B., and J.L. Garvin. 2008. TRPV4 mediates hypotonicity-induced ATP release by the thick ascending limb. American journal of physiology Renal physiology 295: F1090–F1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mihara, H., A. Boudaka, T. Sugiyama, Y. Moriyama, and M. Tominaga. 2011. Transient receptor potential vanilloid 4 (TRPV4)-dependent calcium influx and ATP release in mouse oesophageal keratinocytes. The Journal of Physiology 589: 3471–3482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Green, D.R. 2019. The coming decade of cell death research: five riddles. Cell 177: 1094–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bruni, A., A.R. Pepper, R.L. Pawlick, B. Gala-Lopez, A.F. Gamble, T. Kin, K. Seeberger, G.S. Korbutt, S.R. Bornstein, A. Linkermann, and A.M.J. Shapiro. 2018. Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death & Disease 9: 595.

    Article  CAS  Google Scholar 

  44. Wang, W., M. Green, J.E. Choi, M. Gijon, P.D. Kennedy, J.K. Johnson, et al. 2019. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569: 270–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Friedmann Angeli, J.P., M. Schneider, B. Proneth, Y.Y. Tyurina, V.A. Tyurin, V.J. Hammond, N. Herbach, M. Aichler, A. Walch, E. Eggenhofer, D. Basavarajappa, O. Rådmark, S. Kobayashi, T. Seibt, H. Beck, F. Neff, I. Esposito, R. Wanke, H. Förster, O. Yefremova, M. Heinrichmeyer, G.W. Bornkamm, E.K. Geissler, S.B. Thomas, B.R. Stockwell, V.B. O’Donnell, V.E. Kagan, J.A. Schick, and M. Conrad. 2014. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology 16: 1180–1191.

    Article  CAS  PubMed  Google Scholar 

  46. Alim, I., J.T. Caulfield, Y. Chen, V. Swarup, D.H. Geschwind, E. Ivanova, et al. 2019. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177: 1262–1279 e25.

    Article  CAS  PubMed  Google Scholar 

  47. Amaral, E.P., D.L. Costa, L. Mittereder, K.D. Mayer-Barber, B.B. Andrade, S. Namasivayam, et al. 2019. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. The Journal of Experimental Medicine 216: 556–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Green, D.R. 2018. An element of life. Cell 172: 389–390.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, L., N. Kon, T. Li, S.J. Wang, T. Su, H. Hibshoosh, R. Baer, and W. Gu. 2015. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520: 57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xie, Y., W. Hou, X. Song, Y. Yu, J. Huang, X. Sun, R. Kang, and D. Tang. 2016. Ferroptosis: Process and function. Cell Death and Differentiation 23: 369–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, W.S., R. SriRamaratnam, M.E. Welsch, K. Shimada, R. Skouta, V.S. Viswanathan, J.H. Cheah, P.A. Clemons, A.F. Shamji, C.B. Clish, L.M. Brown, A.W. Girotti, V.W. Cornish, S.L. Schreiber, and B.R. Stockwell. 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell 156: 317–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ingold, I., C. Berndt, S. Schmitt, S. Doll, G. Poschmann, K. Buday, et al. 2018. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172: 409–422 e21.

    Article  CAS  PubMed  Google Scholar 

  53. Su, Y., B. Zhao, L. Zhou, Z. Zhang, Y. Shen, H. Lv, L.H.H. AlQudsy, and P. Shang. 2020. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Letters 483: 127–136.

    Article  CAS  PubMed  Google Scholar 

  54. Wu, M., L.G. Xu, X. Li, Z. Zhai, and H.B. Shu. 2002. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. The Journal of Biological Chemistry 277: 25617–25623.

    Article  CAS  PubMed  Google Scholar 

  55. Gong, M., S. Hay, K.R. Marshall, A.W. Munro, and N.S. Scrutton. 2007. DNA binding suppresses human AIF-M2 activity and provides a connection between redox chemistry, reactive oxygen species, and apoptosis. The Journal of Biological Chemistry 282: 30331–30340.

    Article  CAS  PubMed  Google Scholar 

  56. Lu, C.X., T.J. Fan, G.B. Hu, and R.S. Cong. 2003. Apoptosis-inducing factor and apoptosis. Sheng wu hua xue yu sheng wu wu li xue bao. Acta biochimica et biophysica Sinica 35: 881–885.

    CAS  PubMed  Google Scholar 

  57. Ohiro, Y., I. Garkavtsev, S. Kobayashi, K.R. Sreekumar, R. Nantz, B.T. Higashikubo, S.L. Duffy, R. Higashikubo, A. Usheva, D. Gius, N. Kley, and N. Horikoshi. 2002. A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Letters 524: 163–171.

    Article  CAS  PubMed  Google Scholar 

  58. Varecha, M., J. Amrichova, M. Zimmermann, V. Ulman, E. Lukasova, and M. Kozubek. 2007. Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells. Apoptosis : an international journal on programmed cell death 12: 1155–1171.

    Article  CAS  Google Scholar 

  59. Elguindy, M.M., and E. Nakamaru-Ogiso. 2015. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH:ubiquinone oxidoreductases (NDH-2). The Journal of Biological Chemistry 290: 20815–20826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen, H.P., D. Yi, F. Lin, J.A. Viscarra, C. Tabuchi, K. Ngo, et al. 2020. Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold- and diet-induced thermogenesis. Molecular cell 77: 600–617 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marshall, K.R., M. Gong, L. Wodke, J.H. Lamb, D.J. Jones, P.B. Farmer, et al. 2005. The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity. The Journal of Biological Chemistry 280: 30735–30740.

    Article  CAS  PubMed  Google Scholar 

  62. Wu, M., L.G. Xu, T. Su, Y. Tian, Z. Zhai, and H.B. Shu. 2004. AMID is a p53-inducible gene downregulated in tumors. Oncogene 23: 6815–6819.

    Article  CAS  PubMed  Google Scholar 

  63. Nishizaki, T., T. Kanno, A. Tsuchiya, Y. Kaku, T. Shimizu, and A. Tanaka. 2014. 1-[2-(2-Methoxyphenylamino)ethylamino]-3-(naphthalene-1- yloxy)propan-2-ol may be a promising anticancer drug. Molecules (Basel, Switzerland) 19: 21462–21472.

    Article  CAS  Google Scholar 

  64. Kanno, T., T. Nakano, Y. Fujita, A. Gotoh, and T. Nishizaki. 2012. Adenosine induces apoptosis in SBC-3 human lung cancer cells through A(3) adenosine receptor-dependent AMID upregulation. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 30: 666–677.

    Article  CAS  Google Scholar 

  65. Miriyala, S., C. Thippakorn, L. Chaiswing, Y. Xu, T. Noel, A. Tovmasyan, I. Batinic-Haberle, C.W. Vander Kooi, W. Chi, A.A. Latif, M. Panchatcharam, V. Prachayasittikul, D. Allan Butterfield, M. Vore, J. Moscow, and D.K. St. Clair. 2016. Novel role of 4-hydroxy-2-nonenal in AIFm2-mediated mitochondrial stress signaling. Free Radical Biology & Medicine 91: 68–80.

    Article  CAS  Google Scholar 

  66. Fan, F.Y., R. Deng, H. Yi, H.P. Sun, Y. Zeng, G.C. He, and Y. Su. 2017. The inhibitory effect of MEG3/miR-214/AIFM2 axis on the growth of T-cell lymphoblastic lymphoma. International Journal of Oncology 51: 316–326.

    Article  CAS  PubMed  Google Scholar 

  67. Cho, J., R. Teshigawara, M. Kameda, S. Yamaguchi, and T. Tada. 2019. Nucleus-localized adiponectin is survival gatekeeper through miR-214-mediated AIFM2 regulation. Genes to cells : devoted to molecular & cellular mechanisms 24: 126–138.

    Article  CAS  Google Scholar 

  68. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. Journal of immunology (Baltimore, Md : 1950) 2000; 165:1013–21.

  69. Chi, P.L., C.J. Liu, I.T. Lee, Y.W. Chen, L.D. Hsiao, and C.M. Yang. 2014. HO-1 induction by CO-RM2 attenuates TNF-alpha-induced cytosolic phospholipase A2 expression via inhibition of PKCalpha-dependent NADPH oxidase/ROS and NF-kappaB. Mediators of Inflammation 2014: 279171.

    PubMed  PubMed Central  Google Scholar 

  70. Ni, R., G. Song, X. Fu, R. Song, L. Li, W. Pu, J. Gao, J. Hu, Q. Liu, F. He, D. Zhang, and G. Huang. 2020. Reactive oxygen species-responsive dexamethasone-loaded nanoparticles for targeted treatment of rheumatoid arthritis via suppressing the iRhom2/TNF-alpha/BAFF signaling pathway. Biomaterials 232: 119730.

    Article  CAS  PubMed  Google Scholar 

  71. Lee, K., H.Y. Won, M.A. Bae, J.H. Hong, and E.S. Hwang. 2011. Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells. Proceedings of the National Academy of Sciences of the United States of America 108: 9548–9553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Su, L.J., J.H. Zhang, H. Gomez, R. Murugan, X. Hong, D. Xu, et al. 2019. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity 2019: 5080843.

    PubMed  PubMed Central  Google Scholar 

  73. Zhao, Y., Y. Li, R. Zhang, F. Wang, T. Wang, and Y. Jiao. 2020. The role of erastin in ferroptosis and its prospects in cancer therapy. Oncotargets and Therapy 13: 5429–5441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kang, R., G. Kroemer, and D. Tang. 2019. The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biology & Medicine 133: 162–168.

    Article  CAS  Google Scholar 

  75. Mou, Y., J. Wang, J. Wu, D. He, C. Zhang, C. Duan, and B. Li. 2019. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. Journal of Hematology & Oncology 12: 34.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. BS2015SW028, ZR2016HM53, and ZR2019MH05), Key Research and Development Projects of Shandong Province (Grant No. 2015GSF118115), the Cross-disciplinary Fund of Shandong University (Grant No. 2018JC007), the National Natural Science Foundation of China (Grant No. 81572191, 81501880, and 81602761), and the College Student Science and Technology Innovation Fund of Shandong University (Grant No. 2019369).

Author information

Authors and Affiliations

Authors

Contributions

CQ, YZ, and ZX performed the literature search and were major contributors in the writing of the manuscript. DL, HH, and RA provided suggestions and edited the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yunpeng Zhao or Cheng Qiu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Hou, H., Luo, D. et al. ROS-Dependent Lipid Peroxidation and Reliant Antioxidant Ferroptosis-Suppressor-Protein 1 in Rheumatoid Arthritis: a Covert Clue for Potential Therapy. Inflammation 44, 35–47 (2021). https://doi.org/10.1007/s10753-020-01338-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01338-2

KEY WORDS

Navigation